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SUMMARY

In flies, Centrosomin (Cnn) forms a phosphorylation-
dependent scaffold that recruits proteins to the
mitotic centrosome, but how Cnn assembles into a
scaffold is unclear. We show that scaffold assembly
requires conserved leucine zipper (LZ) and Cnn-
motif 2 (CM2) domains that co-assemble into a 2:2
complex in vitro. We solve the crystal structure of
the LZ:CM2 complex, revealing that both proteins
form helical dimers that assemble into an unusual
tetramer. A slightly longer version of the LZ can
form micron-scale structures with CM2, whose
assembly is stimulated by Plk1 phosphorylation
in vitro. Mutating individual residues that perturb
LZ:CM2 tetramer assembly perturbs the formation
of these micron-scale assemblies in vitro and Cnn-
scaffold assembly in vivo. Thus, Cnn molecules
have an intrinsic ability to form large, LZ:CM2-inter-
action-dependent assemblies that are critical for
mitotic centrosome assembly. These studies provide
the first atomic insight into a molecular interaction
required for mitotic centrosome assembly.

INTRODUCTION

Centrosomes play an important part in many cell processes, and

they are formed when pericentriolar material (PCM) is recruited

around the mother centriole (Conduit et al., 2014b; Wang et al.,

2011). Several hundred proteins are thought to be concentrated

in the PCM, and these include proteins involved in nucleating

and organizing microtubules (MTs) as well as many important

cell-cycle regulators and signaling molecules (Conduit et al.,

2015; Vertii et al., 2016). It is unclear, however, how the hundreds

of proteins localized within the PCM assemble into a functional

organelle.

During interphase, the centrioles in many cell types organize

relatively small amounts of PCM, and recent studies have re-

vealed that the interphase PCM is spatially organized (Fu and

Glover, 2012; Lawo et al., 2012; Mennella et al., 2012; Sonnen
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et al., 2012). In particular, Pericentrin—the Pericentrin-like-pro-

tein (PLP) in flies—is asymmetrically distributed within the inter-

phase PCM, with its C terminus close to the mother centriole

and its N terminus stretched outward away from the centriole.

The interphase PCM is largely assembled within the boundary

defined by Pericentrin, which is required to recruit the interphase

PCM (Lawo et al., 2012; Mennella et al., 2012).

As cells prepare to enter mitosis, there is a dramatic increase

in the amount of PCM recruited around the centrioles (Conduit

et al., 2015; Palazzo et al., 2000). The mitotic PCM appears

less well organized than the interphase PCM, and studies in flies

suggest that Centrosomin (Cnn) plays a crucial part in assem-

bling the expanded mitotic PCM (Conduit et al., 2010; Lucas

and Raff, 2007; Megraw et al., 2001; 1999; Vaizel-Ohayon and

Schejter, 1999). In fly embryos, Cnn is recruited around mother

centrioles in an Spd-2-dependent manner, where it gets phos-

phorylated by Polo, allowing it to assemble into a scaffold struc-

ture that then fluxes outward away from the mother centriole

along the centrosomal MTs (Conduit et al., 2014b; 2014a). Cnn

and Spd-2 cooperate to recruit other proteins to mitotic centro-

somes, and, in the absence of both proteins, mitotic centrosome

assembly is abolished (Conduit et al., 2014b).

In worms, SPD-5 is the likely functional ortholog of Cnn,

although the two proteins are not obviously related by sequence.

SPD-5 is essential for mitotic PCM assembly, and, like Cnn, it is

also recruited to centrioles by SPD-2, where it becomes phos-

phorylated by PLK-1, allowing SPD-5 to assemble into a scaffold

structure that recruits proteins to the mitotic centrosome (Hamill

et al., 2002; Kemp et al., 2004; Pelletier et al., 2004; Woodruff

et al., 2015). Recombinantly expressed SPD-5 can assemble

into micron-scale assemblies in vitro, and this process is

enhanced by the presence of SPD-2 and PLK-1 (Woodruff

et al., 2015; Wueseke et al., 2016). Plk1, Cep215/Cdk5Rap2,

and Cep192—the vertebrate homologs of Polo/PLK-1, Cnn,

and SPD-2 (there are no obvious vertebrate homologs of SPD-

5), respectively—have all also been implicated in mitotic PCM

recruitment (Barr et al., 2010; Choi et al., 2010; Gomez-Ferreria

et al., 2007; Haren et al., 2009; Joukov et al., 2014; Lizarraga

et al., 2010; Zhu et al., 2008).

Although there is increasing evidence that proteins like

Cnn and SPD-5 can form scaffold-like structures that help

recruit the mitotic PCM, the nature of these scaffolds remains
ed by Elsevier Inc.
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mysterious. In particular, it is unclear whether these proteins

form highly organized scaffolds with a well-defined structure

based on precise molecular interactions or whether they form

more amorphous interactions and structures that allow the

PCM to phase-separate from the cytoplasm as a liquid- or gel-

like droplet (Conduit et al., 2015; Woodruff et al., 2014; Zwicker

et al., 2014). Intriguingly, no well-ordered structural interaction

has yet been identified that is required formitotic PCMassembly,

lending credence to the idea that the mitotic PCMmay be intrin-

sically unstructured.

DrosophilaCnn contains a phospho-regulated multimerization

(PReM) domain (Conduit et al., 2014a) that consists of a previ-

ously identified leucine zipper motif (LZ) (Heuer et al., 1995) fol-

lowed by a series of highly conserved Ser/Thr residues that

can be phosphorylated by recombinant Plk1 in vitro. Alanine

substitutions of either the conserved Leu residues of the LZ or

of the ten conserved Ser/Thr residues strongly block Cnn-scaf-

fold assembly in vivo, while substituting phospho-mimicking

Glu/Asp mutations for the ten Ser/Thr residues allows Cnn to

spontaneously form scaffold-like structures in the cytoplasm.

The purified PReM domain forms an LZ-dependent dimer

in vitro, but mutant forms with the phospho-mimicking 10D/E

mutations can assemble into higher-order oligomers, suggesting

that multimerization of the phosphorylated PReM domain is

crucial for Cnn-scaffold assembly. Unfortunately, the nature of

the interactions that drive PReM domain multimerization remain

to be elucidated.

The conserved C-terminal Cnn-motif 2 (CM2) domain has

been implicated in targeting Cnn-family proteins to centrosomes

(Barr et al., 2010;Wang et al., 2010). Here, we show that CM2 not

only helps recruit Cnn to centrosomes but also helps Cnn

assemble into a scaffold. Purified CM2 forms a stable 2:2

tetramer with the purified LZ of the PReM domain, and we solve

the crystal structure of the LZ:CM2 complex, revealing that heli-

cal dimers of LZ and CM2 interact in an anti-parallel fashion. This

structure has a striking similarity to the tetrameric complex

formed between two dimers of Homer1, a protein that forms

a mesh-like matrix that is required for the assembly of the post-

synaptic density (PSD) in neurons (Hayashi et al., 2009). In

the full-length Cnn molecule, LZ is flanked by additional pre-

dicted helical sequences in the PReM domain, and, when mixed

with CM2, the PReM domain does not form a tetramer but

instead forms large micron-scale structures whose assembly is

enhanced by Plk1-dependent phosphorylation. Point mutations

that perturb the LZ:CM2 interaction perturb the assembly of

these complexes in vitro and Cnn-scaffold assembly in vivo.

Thus, Cnn molecules have an intrinsic ability to self-assemble

into micron-scale structures, and this requires the well-ordered

LZ:CM2 interaction interface.

RESULTS

The CM2 Domain Targets Cnn to Centrosomes but Is
Also Required for Efficient Cnn-Scaffold Assembly
To test the function of the Cnn-CM2 domain, we generated lines

expressingWTGFP-Cnn or a form of the protein lacking the CM2

domain (GFP-Cnn-DCM2) in a cnn mutant background. In most

fly somatic cells, the centrioles organize very little PCM or MTs
during interphase (Jankovics and Brunner, 2006; Martinez-Cam-

pos et al., 2004; Rogers et al., 2008), but in the rapidly dividing

early syncytial embryo, the centrosomes are essentially always

in a mitotic-like state, maintaining an enlarged, Spd-2- and

Cnn-dependent, PCM throughout these early nuclear divisions

(Conduit et al., 2010; Megraw et al., 1999). In these embryos,

Cnn is constantly recruited aroundmother centrioles and assem-

bles into a large scaffold that fluxes outward along the centroso-

mal MTs, forming ‘‘flares’’ that break away from the periphery of

the PCM (Conduit et al., 2014b; Megraw et al., 2002).

This behavior of Cnn was recapitulated by WT GFP-Cnn

(Figure 1A), but GFP-Cnn-DCM2 was only very weakly localized

at centrosomes (Figure 1A). This difference was unlikely to be

due to differences in protein stability as GFP-Cnn and GFP-

Cnn-DCM2 were expressed at similar levels in transgenic em-

bryos (Figure 1A, inset). We conclude that CM2 is required to effi-

ciently recruit Cnn to centrosomes—as shown previously for

other Cnn-family members (Barr et al., 2010; Wang et al., 2010).

The low level of GFP-Cnn-DCM2 at centrosomes made it

difficult to ascertain whether CM2 might also be required for

Cnn-scaffold assembly. We showed previously, however, that

a form of Cnn in which the ten putative phosphorylated Ser/Thr

residues in the PReM domain had been mutated to phospho-

mimicking Glu/Asp residues (GFP-Cnn-10D/E) could spontane-

ously assemble ectopic ‘‘scaffolds’’ in the cytoplasm indepen-

dently of centrosomes and require a functional LZ for their

assembly (Conduit et al., 2014a). Injecting mRNA encoding the

phospho-mimicking GFP-Cnn-10D/E into WT unfertilized eggs

(that lack endogenous centrosomes) led to the formation of

large cytoplasmic GFP-Cnn-10D/E scaffolds, while injecting

mRNA encoding a form of the protein lacking the CM2 domain

(GFP-Cnn-10D/E-DCM2) did not (Figure 1B). These data sug-

gest that the CM2 domain is likely required for Cnn-scaffold

assembly.

The CM2 and LZ Domains Assemble into a 2:2
Tetrameric Complex
As our data implicated both the conserved LZ and CM2 domains

in Cnn-scaffold assembly, we wondered whether they might

interact. Domain boundaries were designed using PSIPRED

(Jones, 1999), and we recombinantly expressed and purified a

55aa ‘‘LZ’’ fragment (aa490–544) and a 67aa ‘‘CM2’’ fragment

(aa1082–1148) from bacteria (Figures 2A and S1A). SEC-MALS

analysis revealed that LZ formed a stable homo-tetramer in

solution, while CM2behaved as a stable homo-dimer (Figure 3A).

When the two domains were mixed in vitro, however, they

reassembled to form a stable 2:2 hetero-tetrameric complex

(Figure 3A).

Crystallization of the LZ:CM2 hetero-tetramer revealed that

the LZ andCM2were entirely a helical, with each domain forming

a parallel homo-dimer that interacted in an anti-parallel fashion

to form the 2:2 hetero-tetrameric complex (Figure 2B; Table

S1). Although the N-terminal half of CM2 formed a canonical

coiled coil (Figure 2A), the C-terminal half adopted an unusual

‘‘splayed’’ conformation that wrapped around and clasped the

coiled coil of the LZ (Figure 2B). A splayed C terminus was also

observed in crystals of CM2 alone (Figure S1B; Table S1), indi-

cating it is a feature of the CM2 sequence rather than being
Cell 169, 1078–1089, June 1, 2017 1079



Figure 1. The Cnn-CM2 Domain Is Required

for Centrosomal Targeting and for Scaffold

Assembly

(A) Micrographs illustrate and graphs quantify the

mean centrosomal GFP-fluorescence levels in

embryos of cnn mutant flies expressing GFP-Cnn

or GFP-Cnn-DCM2. Inset shows a western blot

probing the relative levels of GFP-Cnn or GFP-

Cnn-DCM2 expressed in these embryos; actin is

shown as a loading control.

(B) Micrographs illustrate the spontaneous as-

sembly of cytoplasmic Cnn scaffolds in unfertilized

eggs expressing GFP-Cnn-10D/E (15/15 injected

eggs); no scaffolds were detectable in eggs ex-

pressing GFP-Cnn-10D/E-DCM2 (0/14 injected

eggs). Error bars (A) represent the SD. Statistical

significance was assessed using an unpaired t test

in GraphPad Prism (****p < 0.0001). Scale bars =

2 mm (A) and 5 mm (B).
driven by the interaction with the LZ. Assembly of the LZ:CM2

tetramer buried the canonical Leu residues that define the LZ

(L528, L532, L535, L539, L542) (blue asterisks, Figure 2A; blue

residues, Figure 4A), and also three residues that appear to

be invariant within CM2 domains across species (Ile1126,

Thr1133, and Leu1137) (Figures 2A and S1A; orange asterisks;

Figure 4A, orange residues,). We also solved the structure of

several LZ:CM2 complexes that contained slightly shorter or

longer versions of the LZ, again based on PSIPRED predictions

(Figure 2D; Table S1). These revealed structural consistency in

the four-helix bundle at the core of the interaction interface, while

the coiled coils of both components that extended away from the

core bundle demonstrated variability, both in terms of flexibility

(angle relative to the core bundle) and the degree of order within

the crystal. Thus, the LZ:CM2 interface forms a stable tetrameric

core that is surrounded bymore flexible dimeric helical elements.

Performing a structure-based search of the Protein Data Bank

found only two similarly assembled structures (PDB: 3CVE and

4MT8), one of which is a homo-tetrameric assembly formed

by the C-terminal regions of two Homer1 dimers (Figure 2E, in

gray). This protein is implicated in protein-scaffold assembly

within the postsynaptic density (PSD) in neurons (Hayashi

et al., 2009). Intriguingly, although CM2 showed no tendency

to tetramerise in solution (Figure S1C), apo-CM2 crystals con-

tained two copies of the CM2 homo-dimer that interacted in an

anti-parallel fashion to form a homo-tetramer (Figure S1B).

Unexpectedly, the CM2 dimer binds a Zn2+ ion at its N termi-

nus, coordinated between a His residue (H1082) that appears to

be invariant in CM2 domains and a Cys residue (C1084) that is

well conserved inDrosophila species but less so in other species

(Figures 2A and S1A, brown asterisks; Figure 2C, brown resi-
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dues). Zn2+ was not included in our pro-

tein preparations, so it must have been

incorporated into the dimer in the bacteria

and then retained throughout the purif-

ication process, indicating tight binding.

Addition of EDTA to WT CM2, or mutation

of the Zn2+-coordinating His and Cys
residues to Ala (CM2-HCAA), prevented dimerization in vitro

(Figure S2A), confirming that Zn2+ plays a structural role within

CM2. Furthermore, we used an mRNA injection assay (Novak

et al., 2016) to compare the localization of WT GFP-Cnn,

GFP-Cnn-DCM2, and GFP-Cnn-HCAA in cnn mutant embryos

expressing Spd-2-RFP as a centrosomal marker—as Cnn is

not required to recruit Spd-2 to centrosomes in embryos

(Conduit et al., 2014b). The HCAAmutation perturbed Cnn-scaf-

fold assembly in vivo, although not to the same extent as deleting

the entire CM2 domain (Figure S2B), suggesting that Zn2+ bind-

ing enhances scaffold assembly in vivo but is not essential.

We suspect that this is because although Zn2+ is essential for

the dimerization of CM2 in vitro, it is probably not essential for

the dimerization of full-length Cnn molecules in vivo.

Two Cys residues conserved within Drosophila species in the

LZ region (C521, C525) line the interior of the coiled coil, with

C521 consistently forming a homotypic disulfide bond (Figure S3).

Although the cytoplasm is generally a reducing environment,

redox-controlled regulation events have been reported at the

centrosome (Lim et al., 2015). However,mutation of bothCys res-

idues to Ser had no obvious effect on Cnn-scaffold assembly

in vivo (data not shown), suggesting that disulfide formationwithin

the LZ is not essential for function under normal conditions.

Perturbing the LZ:CM2 Interaction In Vitro Perturbs
Cnn-Scaffold Assembly In Vivo
To test whether the LZ:CM2 interaction was required for Cnn-

scaffold assembly in vivo, we substituted several individual res-

idues that would be predicted to disrupt the interaction interface

within the four-helix bundle (Figure 4A). We first concentrated

on the three invariant residues in the CM2 domain (Ile1126,



Figure 2. Crystal Structure of the LZ:CM2 Complex

(A) Schematic illustration of Drosophila Cnn highlighting predicted coiled-coil regions (bubbles; predicted by COILS [Lupas et al., 1991]), predicted disordered

regions (black lines; predicted by XtalPred-RF [Slabinski et al., 2007]), and the LZ (blue) and CM2 (orange) domains. Expanded regions show multiple sequence

alignments (MSAs) of the regions used for crystallization (see Figure S1A for a more comprehensive MSA of the CM2 domain); boxed regions indicate residues

visible in the crystal structures. Bars indicate the interaction interface with dots or asterisks over the bars highlighting residues buried in the interface. Asterisks

highlight residues subjected to mutational analysis. Residues identified by SOCKET (Walshaw and Woolfson, 2001) as belonging to a canonical coiled coil in the

structure are annotated beneath the sequence with a–g lettering.

(B) Side and top views of the LZ (blue):CM2 (orange) complex, shown in cartoon representation; a space-fillingmodel of LZ is overlaid with a reduced opacity. The

coordinating Zn2+ ion is shown as a green sphere. The N terminus (NT) and C terminus (CT) of each protein are indicated.

(C) Close up view of the N-terminal region of CM2 highlighting the coordination of the Zn2+ ion.

(D) Ribbon diagram of three different LZ:CM2 domain crystal structures (shades of gray) overlaid on the original LZ:CM2 structure (blue and orange) shown in (B);

the N termini of the different LZ constructs are indicated by arrows. The core of the LZ:CM2 interaction interface is similar in all of the structures (red box), but the

surrounding helical regions exhibit considerable variation.

(E) An overlay of the LZ:CM2 structure (blue:orange) and the Homer1:Homer1 tetramer (gray) (PDB: 3CVE). See also Figures S1 and S2.
Thr1133, and Leu1137) (Figure 4A, orange residues). We individ-

ually substituted each residue with the large negatively charged

residue Glu and confirmed that each substitution abolished the

LZ:CM2 interaction in vitro; importantly, none of these substitu-

tions appeared to perturb the ability of CM2 to adopt a helical

conformation (Figure S4A) or to dimerize (Figures 3B, 3E, S5A,
and S5B). We injected mRNAs encoding either the WT or the

individually substituted GFP-Cnn fusion proteins into cnnmutant

embryos expressing Spd-2-RFP. Strikingly, all of the individual

substitutions perturbed Cnn localization and scaffold assembly,

essentially to the same extent as deleting the entire CM2 domain

(Figure 4C).
Cell 169, 1078–1089, June 1, 2017 1081



Figure 3. SEC-MALS Analysis of WT and

Mutant LZ, CM2, and LZ:CM2 Complexes

(A–D) SEC-MALS analyses of either WT LZ (blue),

WT CM2 (orange), or the WT LZ:CM2 complex

(green) (A), a representative example of a CM2

mutant (T1133E) that does not form a complexwith

LZ (B), a representative example of an LZ mutant

(L528E) that does not form a complex with CM2

(C), or an analysis of the LZ mutant (L535E) that

can still form a complex with CM2, even though it

can no longer form a homo-tetramer on its own (D).

(E and F) Tables summarizing the ability of the

various CM2 mutants (E) or LZ mutants (F) to form

the LZ:CM2 hetero-tetramer. See also Figures S4

and S5.
We also substituted the R1141 residue of the CM2 domain.

This residue is highly conserved (Figuress 2A and S1A, light

green asterisk), but it lies just outside the structured LZ:CM2

interaction interface, in the C-terminal 8aa that are largely disor-

dered. R1141 is required for CM2 to interact with two other pro-

teins, PLP and Centrocortin (Kao and Megraw, 2009; Lerit et al.,

2015). Substituting R1141 for His abolishes these interactions,

but this substitution had only a minor effect on Cnn localization

and scaffold assembly compared to the CM2 deletion (Fig-

ure 4C)—although the Cnn flares at the periphery of the PCM

were destabilized due to the failure to interact with PLP, as

shown previously (Lerit et al., 2015; Richens et al., 2015). Thus,

the previously described interactions between CM2 and PLP

or Centrocortin are not sufficient to explain the role of CM2 in

centrosomal targeting or scaffold assembly.
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Wenext individually substituted each of

the Leu residues in the LZ involved in the

interaction with CM2 (L528, L532, L535,

L539, L542) (Figure 4A, blue residues)

for Glu. Most of these substitutions

strongly perturbed the ability of the LZ

to form a stable 2:2 tetramer with CM2

(Figures 3C, 3F, and S5C–S5E), the only

exception being L535E, which still formed

a 2:2 tetramer but with reduced efficiency

(Figure 3D). Intriguingly, all of the individ-

ual LZ substitutions, including L535E,

perturbed the assembly of the apo-

LZ-homo-tetramer (Figures 3C, 3D, and

S5C–S5E), and strongly reduced the

a helicity of the proteins (Figures S4B

and S4C).

We injected mRNAs encoding either

WT-, complete LZ-deletion-, or individual

LZ-substitution-GFP-Cnn fusion proteins

into cnn mutant embryos expressing

Spd-2-RFP. Unlike GFP-Cnn-DCM2,

GFP-Cnn-DLZ was still recruited around

the mother centrioles, but, like GFP-

Cnn-DCM2, it failed to assemble into a

scaffold structure, as shown previously

(Conduit et al., 2014a) (Figure 4B). Most
of the individual LZ substitutions perturbed Cnn-scaffold assem-

bly to a similar extent as deleting the LZ domain (Figures 3F and

4B). Most strikingly, however, the L535E substitution could still

form a detectable, although less robust, Cnn scaffold (Figure 4B);

this is in excellent agreement with our analysis of the behavior of

the LZ-L535E:CM2 complex in vitro (Figure 3D). Taken together,

these mutational studies provide strong evidence that the

LZ:CM2 interaction is important for Cnn-scaffold assembly.

LZ-L535E Is Partially Unfolded but Can Be Induced to
Fold by CM2
The purified LZ-L535E protein exhibits reduced a helicity, sug-

gesting that it is partially unfolded (Figures S4B and S4C, red

line), yet it can still interact with CM2 (Figure 3D). To better under-

stand why the L535E substitution did not more strongly disrupt



Figure 4. An Analysis of the Ability of Various LZ and CM2 Mutants to Support Cnn-Scaffold Assembly In Vivo

(A) Views of the LZ:CM2 complex (shown in cartoon representation; space-filling model overlaid with reduced opacity) highlighting the LZ (blue) and CM2 (orange)

residues in the interaction interface subjected to mutational analysis.

(B and C) Micrographs illustrate and graphs quantify the centrosomal GFP-fluorescence levels of WT-GFP-Cnn or the various LZ (B) or CM2 (C) mutants; Spd-2-

RFP is shownas a centrosomalmarker. Note how the LZmutants are still recruited to the centrosome, but,with the exception of the L535E, they cannot assemble a

scaffold,while theCM2mutants,with theexception of thecontrol R1141Hmutation, are not efficiently recruited to thecentrosomeandcannot assemble ascaffold.

(D and E) Overlays of the WT LZ:CM2 complex (gray) and the LZ-L535E:CM2 complex (blue and orange). E535—shown as a space-filled residue (D)—is

accommodated within the interaction interface, and the enlarged image (E) shows how E535 (blue) hydrogen bonds with the conserved T1133 residue. Error bars

(B and C) represent the SD of the mean. Statistical significance (compared toWT [above each bar] and either Cnn-DLZ or Cnn-DCM2 [line at the top of the graph])

was assessed using an unpaired t test in GraphPad Prism (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). See also Figures S1, S2, and S3. Scale bars = 2 mm.
the LZ:CM2 interaction, we generated LZ-L535E:CM2 crystals

and solved their structure (Figures 4D and 4E; Table S1). Perhaps

surprisingly, LZ-L535E appeared to be folded normally and was

largely helical within the crystal structure. Although L535 is
packed within the core of the LZ:CM2 assembly, there is suffi-

cient space in the core to accommodate the longer E535 side

chain, and E535 also forms a hydrogen bond with the invariant

CM2 T1133 residue in the core. This presumably explains why
Cell 169, 1078–1089, June 1, 2017 1083



Figure 5. The PReMDomain Interacts with CM2 and Forms Large, Micron-Scale ComplexesWhose Assembly Is Promoted by Plk1-Mediated

Phosphorylation

(A) Schematic illustration of the PReM domain showing the internal LZ (taken from the LZ:CM2 crystal structure) and surrounding sequences that are predicted to

be helical (Jones, 1999) (blue bars). The ten Ser/Thr residues potentially phosphorylated by Polo are indicated by red asterisks; the larger asterisk represents the

S567 residue used to raise the phospho-specific antibody.

(B and C) SEC-MALS analysis of MBP-PReM (blue) and either CM2 (B) or CM2-T1133E (C) (orange) and MBP-PReM+CM2 (B) or MBP-PReM+CM2-T1133E

(C) (green).

(D) Chart quantifies and micrographs show examples of the micron-scale complexes visible by fluorescence microscopy when PReM-GFP is mixed with either

WT (left) or mutant (example shown T1133E, right) forms of CM2. Error bars indicate SD. Both proteins are at a final concentration of 20 mM.

(legend continued on next page)

1084 Cell 169, 1078–1089, June 1, 2017



the L535E mutation only relatively mildly perturbs LZ:CM2

assembly in vitro (Figure 3D) and Cnn scaffold assembly in vivo

(Figure 4B). Moreover, these data suggest that the interaction

with CM2 is sufficient to order a partially disordered LZ; this

may be important for CM2 function in vivo (see Discussion).

Additional Sequences Surrounding the LZ Domain Allow
the LZ and CM2Domains to Assemble intoMicron-Scale
Structures
The originally defined PReM domain (aa403-608) comprises

the LZ (aa490-544) and additional C-terminal (aa545-608) and

N-terminal (aa403-489) extensions that are predicted to be

largely helical (Figure 5A, blue bars). The C-terminal extension

also contains multiple Ser/Thr residues that are phosphorylated

by Plk1 in vitro and that promote Cnn-scaffold assembly in vivo

(Conduit et al., 2014a) (Figure 5A, red asterisks). We purified an

MBP-PReM fusion, and, as shown previously (Conduit et al.,

2014a), it behaved as a dimer (Figure 5B). When mixed with

CM2, however, MBP-PReM assembled into complexes that

were much larger than the LZ:CM2 tetramer (Figure 5B). Impor-

tantly, the CM2 I1126E, T1133E, and L1137E mutations all

completely abolished the formation of these larger complexes

(Figures 5C and S6), strongly arguing that they are not simply

nonspecific aggregates but are mediated by the samemolecular

interactions seen in our hetero-tetrameric LZ:CM2 complex.

Previous studies have shown that purified full-lengthC. elegans

SPD-5canassemble intomicron-scale complexes in vitro (Wood-

ruff et al., 2015;Wueseke et al., 2016), and wewonderedwhether

the PReM:CM2 complexes might have a similar ability. A purified

PReM-GFP fusion protein did not form visible complexes, but

whenmixedwithCM2, it assembled into largemicron-scalestruc-

tures that resembled those formed by purified SPD-5 (Figure 5D).

A FRAP analysis revealed that the molecules in these structures

exhibitednodetectable tendency to internally re-arrange, strongly

suggesting that they are solid-like rather than gel- or liquid-like

structures (Figure 5E) (see Discussion).

Importantly, the assembly of the micron-scale PReM-GFP:

CM2 structures was also abolished by any one of the CM2

mutations that disrupted LZ:CM2 complex assembly (I1126E,

T1133E, and L1137E), again arguing that these structures are

not simply nonspecific aggregates (Figure 5D).

Phosphorylation by Plk1 Promotes the Assembly of the
PReM-GFP:CM2 Structures In Vitro
A key feature of the assembly of the Cnn scaffold in vivo is that it

appears to be initiated at centrosomes by the Polo-dependent

phosphorylation of Cnn at multiple sites within the PReM domain

(Conduit et al., 2014a). To test whether the assembly of the
(E) Micrographs show a FRAP analysis of protein turnover in the PReM-GFP:CM2

was photobleached (t = 0 min), and fluorescence recovery monitored (t = 20 min

(F) Western dot-blot shows that PReM-GFP is phosphorylated by purified Plk1

protein; the same blot was probed with anti-GFP antibodies to confirm equal loa

(G) Graph quantifies the visible area of the PReM-GFP:CM2 complexes (both pro

the PReM-GFP protein has been pre-treated with Plk1 (red line) or with buffer c

replicates; note that one outlier time point in one experiment that was �10 times

(H) Micrographs show how anti-Cnn-p567 antibodies (red) preferentially recogn

peripheral regions (in some cases highlighted with arrows) recognized by antibod

5 mm (E), and 3 mm (H).
PReM-GFP:CM2 structures in vitro was influenced by Plk1-

dependent phosphorylation, we first raised an antibody that

specifically recognized a PReM-domain peptide that had been

phosphorylated on one of the conserved Ser residues (S567)

(Figure 5A, large red asterisk,). Western blotting revealed that

this antibody only recognized PReM-GFP after it had been phos-

phorylated by Plk1 in vitro, confirming that the antibody was

phospho-specific and that Plk1 can phosphorylate PReM-

GFP in vitro, as shown previously for MBP-PReM (Conduit

et al., 2014a) (Figure 5F). Strikingly, pre-incubation of the

PReM domain with Plk1 dramatically increased the efficiency

of PReM-GFP:CM2 complex assembly (Figure 5G). Thus, the

co-assembly of these two domains into micron-scale assem-

blies in vitro appears to be regulated by phosphorylation in

the same way that Cnn assembly into a centrosomal scaffold

is regulated in vivo.

Cnn Is Preferentially Phosphorylated in the Inner Region
of the PCM
We have previously speculated that Cnn-scaffold assembly is

initiated by Polo-dependent phosphorylation around the mother

centriole, while disassembly is initiated toward the centrosomal

periphery because Cnn molecules are gradually dephosphory-

lated as they flux outward away from the source of Polo around

the mother centriole (Conduit et al., 2014a; 2015). The Cnn-

phospho-S567 antibody preferentially recognizes Cnn phos-

phorylated by Plk1 (Figure 5F), allowing us to directly test this

possibility. In support of our hypothesis, we found that the

Cnn-phospho-S567 antibody preferentially recognized the inner

region of the Cnn scaffold and was largely absent from the

peripheral regions where the Cnn scaffold was starting to disas-

semble (Figure 5H, arrows).

DISCUSSION

Cnn plays a crucial role in mitotic centrosome assembly in

Drosophila (Lucas and Raff, 2007; Megraw et al., 1999; 2001;

Vaizel-Ohayon and Schejter, 1999). We have identified two

conserved regions of Drosophila Cnn—an internal leucine zipper

(LZ) and the C-terminal Cnn-motif-2 (CM2)—that are important

for this process. Structural analyses revealed that the LZ and

CM2 domains form an antiparallel 2:2 complex of two parallel

coiled coils. Mutagenesis confirmed that amino acids within the

interaction interface that are required for LZ:CM2complexassem-

bly in vitro are also required for centrosome assembly in vivo. The

LZ is contained within the previously identified phospho-regu-

lated-multimerization (PReM) domain, which appears to be phos-

phorylated by Polo at centrosomes to drive the mitotic assembly
complexes (as seen in [D]). Complexes were imaged (t = �2 min), a small area

).

in vitro, allowing the phospho-specific Cnn-pS567 antibody to recognize the

ding of PReM-GFP.

teins at a final concentration of 10 mM) at various time points after mixing when

ontrol (gray line). Error bars indicate SD (n = three independent experimental

brighter than all the others was excluded from this analysis).

ize the inner region of the centrosome and are largely absent from the more

ies that recognize total Cnn (green). See also Figure S6. Scale bars = 10 mm (A),
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Figure 6. A Schematic Illustration of How Cnn Molecules Might Assemble into a Scaffold around the Mother Centriole

(A) In the cytoplasm, Cnn exists as a dimer: the PReM-LZ and CM2 structures are highlighted, and the other sequences within Cnn are depicted with dotted lines

(not to scale).

(B) Cnn dimers are recruited to the mother centriole through their CM2 domains.

(C) These molecules are phosphorylated in their PReM domains—and almost certainly at several other sites that are not depicted here (Conduit et al., 2014a).

Phosphorylation destabilizes the helical dimer, allowing it to partially ‘‘unwind.’’

(D) The partial unwinding of the dimer allows the CM2 domain to interact with the LZ, either intra-molecularly (i) or inter-molecularly (ii); the partial unwinding of the

helices could allow the Cnn molecules, which are predicted to consist largely of coiled-coil domains but also contain predicted disordered regions (Figure 2A),

extra flexibility to form an intra-molecular interaction. The formation of the LZ:CM2 complex allowsCnnmolecules to assemble into larger complexes; twomodels

of how this might occur are shown here. Note that in (i), phosphorylation destabilizes intra-molecular PReM domain interactions but does not prevent inter-

molecular PReMdomain interactions.We think this plausible, as the intra-molecular dimermight initially be slightly destabilized by phosphorylation but thenmore

strongly destabilized by the binding of CM2, thus favoring inter-molecular interactions. An alternative possibility is that phosphorylated PReM domains no longer

tend to form dimers but tend to form higher-order oligomers (although this is not illustrated here). There is some evidence for this idea as, in vitro, MBP-PReM

forms a stable dimer, whereas MBP-PReM-10D/E forms larger oligomers (Conduit et al., 2014a).
of the Cnn scaffold in vivo (Conduit et al., 2014a). The PReM and

CM2 domains can co-assemble into micron-scale structures

in vitro, and this is enhanced by Plk1 phosphorylation of the

PReM domain. These studies provide a first atomic insight into a

structural interaction required to assemble the mitotic PCM. In

Figure 6, we schematically illustrate how Cnn molecules might

assemble into a scaffold and how this processmight be regulated

by phosphorylation so that it only occurs at centrosomes.

Cnn molecules are predicted to be largely coiled coils, so we

propose that Cnn exists as a ‘‘closed’’ homo-dimer in the cyto-

plasm and that the LZ and CM2 domains do not interact within

these dimers (Figure 6A). Cnn dimers are recruited around the

mother centriole (Figure 6B) where, during mitosis, they can be

phosphorylated by Polo (Figure 6C) (Conduit et al., 2014a), which

is highly concentrated around themother centriole (Conduit et al.,

2015; Fu and Glover, 2012). We speculate that phosphorylation
1086 Cell 169, 1078–1089, June 1, 2017
destabilizes the PReM domain helical dimer, allowing the helices

to partially unwind (Figures 6B/ 6C). This allows the C-terminal

CM2 to ‘‘invade’’ the partially unwound dimer—either intra-

molecularly (Figure 6Di) or inter-molecularly (Figure 6Dii)—to

form a tight LZ:CM2 complex. The LZ:CM2 interaction stabilizes

the partially unwound state of the nearby helices, allowing them

to form inter-molecular interactions with other unwound helical

elements in nearby Cnn molecules, assembling a matrix-like

structure. In fly embryos, the Cnn scaffold fluxes away from the

mother centriole, separating Cnn molecules from the source of

Polo kinase. As a result, Cnn is gradually dephosphorylated, fa-

voring the re-establishment of the intra-molecular dimer interac-

tions within the PReM domain, and so scaffold disassembly.

These ideas can explain why Cnn-scaffold assembly normally

only occurs at centrosomes and only during mitosis. Cnn must

be phosphorylated at multiple sites to drive scaffold assembly



(Conduit and Raff, 2010), and it seems likely that the mother

centriole is the only place in the cell where the local concentra-

tion of both Cnn and Polo are high enough for this to occur

when Polo becomes activated during mitosis. Our in vitro data

support this hypothesis, as phosphorylation by Plk1 enhances

the ability of the purified PReM and CM2 domains to co-

assemble into micron-scale structures, suggesting that this key

interaction is strongly influenced by Polo/Plk1-dependent phos-

phorylation. Within the context of the full-length Cnn molecule,

the PReM and CM2 domains also do not appear to interact effi-

ciently until Cnn has been phosphorylated—phospho-mimicking

GFP-Cnn-10D/E molecules can efficiently form CM2-dependent

scaffolds in the cytoplasm, whileWTGFP-Cnnmolecules cannot

(Conduit et al., 2014a).

An important conclusion from our studies is that the key CM2

residues required for scaffold assembly arealso required to recruit

Cnn to centrosomes. This dual role for CM2 implies that Cnnmol-

ecules can only assemble into a scaffold once their CM2 domains

have been released from their centrosomal recruiting sites (Fig-

ure 6C / 6D). A priori, this might seem surprising, but in these

early embryos the Cnn scaffold continually assembles close to

themother centrioles and then fluxes outward along the centroso-

malMTs (Conduit andRaff, 2015; Conduit et al., 2014a). Thus, the

assembling Cnn scaffold appears to be released from its centro-

somal recruiting sites to allow it to flux outward; this could be

enforced by the dual role of CM2. An attractive possibility is that

Polo phosphorylation at the centrosome not only ‘‘opens’’ the

PReM domain to allow CM2 binding but also stimulates the

release of CM2 from its centrosomal recruiting sites.

The nature of the PReM domain interactions that promote

matrix assembly are presently unclear, but they could occur in

several ways, two of which are depicted in Figure 6D. Coiled-

coil-containing proteins have been implicated in a wide variety

of cellular function, but, with the exception of de novo synthe-

sized coils such as those that form hydrogels (Banwell et al.,

2009), it is rare that they have been proposed to form large

network structures. It is therefore interesting that a close struc-

tural homolog of the LZ:CM2 hetero-tetramer is the homo-tetra-

meric Homer1 protein that is essential for the construction of the

mesh-like matrix structure of the cytoplasmic postsynaptic den-

sity (PSD) in neurons (Hayashi et al., 2009). Homer1 performs this

function by combining a homotypic coiled-coil interaction at its

C terminus with interactions with another multimeric protein

(Shank) at its N terminus. The PReM and CM2 domains form a

structurally analogous tetrameric coiled-coil bundle but can

use interactions between additional elements within the PReM

domain itself to assemble large multimeric structures without

the need for further accessory proteins.

The mitotic centrosome is a non-membrane-bound organelle,

and there has been much interest recently in the idea that such

organelles may be formed by the phase-separation of compo-

nents into ‘‘biomolecular condensates,’’ often with liquid- or

gel-like properties (Banani et al., 2017). This is an attractive

idea for the centrosome, as a PCM with liquid-like properties

would allow the hundreds of proteins within the mitotic centro-

some to interact efficiently (Zwicker et al., 2014; Hyman et al.,

2014). We show here, however, that the PReM:CM2 proteins

can effectively phase separate from solution to form what ap-
pears to be a solid-phase—as the molecules within these struc-

tures do not detectably internally rearrange over a timescale of

several minutes (Figure 5E). Moreover, dynamic studies suggest

that Cnn molecules also do not readily internally re-arrange at

centrosomes in vivo (Conduit et al., 2014a), and this also appears

to be the case for SPD-5 in worm embryos (Laos et al., 2015).

Interestingly, however, purified SPD-5 can also phase sepa-

rate from solution, but it appears to form either a solid- (Woodruff

et al., 2015) or gel-like phase (Woodruff et al., 2017), depending

on the conditions—although the gel-like phase seems to rapidly

‘‘mature’’ into a form where the SPD-5 molecules do not readily

undergo internal rearrangements (Woodruff et al., 2017). Thus,

we do not rule out the possibility that full-length Cnn molecules

could also form a gel-like phase under certain conditions. To

date, most proteins that form condensates with liquid-like

properties do so using intrinsically disordered domains or multi-

ple low-affinity binding sites (Banani et al., 2017), whereas the

high-affinity, well-ordered, LZ:CM2 interaction we identify here

is clearly central to scaffold assembly both in vitro and in vivo.

Perhaps within the context of the full-length Cnn molecules the

LZ:CM2 interaction serves as an internal scaffold that allows

other regions of Cnn to formother, more disordered and/ormulti-

valent-low-affinity interactions that allow Cnn molecules to form

a gel-like phase. Our finding that two such small regions of Cnn

can self-assemble into micron-scale structures in vitro provides

a powerful tool with which to address this important question.
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STAR+METHODS
KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-GFP (clones 7.1 and 13.1) Roche Cat#11814460001; RRID: AB_390913

Mouse monoclonal anti-Actin (clone AC-40) Sigma-Aldrich Cat#A3853; RRID: AB_262137

Rabbit phospho antibody anti- Cnn pSer567 Pocono Rabbit Farm & Laboratory Animal#30129; Lab ID: Ab#236

Sheep polyclonal anti-Cnn Cottee et al., 2013. Raised in-house Lab ID: Ab#219

Anti-Sheep IgG Alexa Fluor 488 Invitrogen, Thermo Fisher Scientific Cat#A11015; RRID: AB_141362

Anti-Rabbit IgG Alexa Fluor 594 Invitrogen, Thermo Fisher Scientific Cat#A11037; RRID: AB_2534095

Amersham ECL Mouse IgG, HRP-linked whole

antibody (from sheep)

GE Healthcare Life Sciences Cat#NA931V; RRID: AB_772210

Amersham ECL Rabbit IgG, HRP-linked whole

antibody (from donkey)

GE Healthcare Life Sciences Cat#NA934V; RRID: AB_772206

Chemicals, Peptides, and Recombinant Proteins

Red fluorescent polystyrene beads Thermo Fisher Cat#F8808

TetraSpeck beads Thermo Fisher Scientific;

Micron Oxford

Cat#T14792

Adeosine 50-triphosphate disodium salt hydrate (ATP) Sigma-Aldrich Cat#A7699

b-Glycerophosphate disodium salt hydrate Sigma-Aldrich Cat#G9422

Roche complete Roche Cat#11873580001

QuikChange II XL Site-Directed Mutagenesis kit Agilent Cat#200522

Ambion, mMESSAGE mMACHINE T3 Transcription kit Termo Fisher Cat#AM1348

Gateway LR Clonase Enzyme mix Thermo Fisher Cat#11791019

Recombinant protein: Cnn LZ WT

(GPM-D490-K544/L552/S567)

This paper N/A

Recombinant protein: Cnn CM2 WT

(GGS-H1082-L1148)

This paper N/A

Recombinant protein: Cnn CM2 WT

(GGS-H082-L1148-EFGENLYFQ)

This paper N/A

Recombinant protein: Cnn PReM (M-Q403-H608) This paper N/A

Recombinant protein: GST-3C protease Made in house N/A

Recombinant protein: TEV protease Made in house N/A

Critical Commercial Assays

PLK1 in vitro kinase assay ProQinase Cat#0183-000-1

Deposited Data

LZ (aa490-544) -CM2 complex structure This paper PDB: 5MVW

LZ L535E-CM2 complex structure (Crystal Form P21) This paper PDB: 5MW0

LZ L535E-CM2 complex structure (Crystal Form C2) This paper PDB: 5MW9

LZ (aa490-567)-CM2 complex structure This paper PDB: 5MWE

CM2 apo domain structure This paper PDB: 5I7C

Experimental Models: Organisms/Strains

E. coli B834 (DE3) Novagen Cat#69041

E. coli C41 (DE3) Lucigen Cat#60442

w67 (as wild type) Lab stock N/A

pUb-RFP-Spd2, cnnf04547/ SM6^TM6 Conduit et al., 2014a Lab ID: Paul’s F060

cnnHK21/SM6^TM6 Based on Megraw et al., 1999 Lab ID: F397

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

w;pUbq-GFP Cnn WT, cnnf04547/ SM6^TM6 Lucas and Raff, 2007 Lab ID: T054

w;pUbq-GFP Cnn-DCM2, cnnf04547/SM6a This paper Lab ID: ZF1-9, box III

Oligonucleotides

Primer: DLZ_F: GTGCTCTTCCAGCGCCTGGCAGAC

CACAAAGATGTTCTTGGCGTGTTG

This paper N/A

Primer: DLZ_R: CAACACGCCAAGAACATCTTTGTG

GTCTGCCAGGCGCTGGAAGAGCAC

This paper N/A

Primer: attBCnn1_F: GGGGACAAGTTTGTACAAAAA

AGCAGGCTTCATGGACCAGTCTAAACAG GTTTTG

This paper N/A

Primer: attBCnn1081_R GGGGACCACTTTGTACAA

GAAAGCTGGGTCCTATACTGTGGCTGCACCAGTTG

This paper N/A

Primers for LZ constructs, see Table S2 This paper N/A

Primers for CM2 constructs, see Table S2 This paper N/A

Primer: Cnn403_F: CTTTAAGAAGGAGACTCGAGAT

GCAGTTGCAGACGGAAGTAAAGAAG

This paper N/A

Primer: Cnn608_F: GGTTTTCGGATCCAGGTTCGT

GGCTTGCATCACCTTCG

This paper N/A

Recombinant DNA

pRNA GFP Cnn This paper N/A

pRNA GFP Cnn 10D/E Conduit et al., 2014a N/A

pRNA GFP Cnn-DLZ (aa490-544) This paper N/A

pRNA GFP Cnn L528E This paper N/A

pRNA GFP Cnn L532E This paper N/A

pRNA GFP Cnn L535E This paper N/A

pRNA GFP Cnn L539E This paper N/A

pRNA GFP Cnn L542E This paper N/A

pRNA GFP Cnn-DCM2 (aa1082-1148) This paper N/A

pRNA GFP Cnn HCEE This paper N/A

pRNA GFP Cnn I1126E This paper N/A

pRNA GFP Cnn T1133E This paper N/A

pRNA GFP Cnn L1137E This paper N/A

pRNA GFP Cnn R1141H This paper N/A

pRNA GFP Cnn 10D/E-DCM2 This paper N/A

pETM44 His6MBP-LZ (aa490-544/552/567) This paper N/A

pETM44 His6MBP-LZ (aa490-544 L528E) This paper N/A

pETM44 His6MBP-LZ (aa490-544 L532E) This paper N/A

pETM44 His6MBP-LZ (aa490-544 L535E) This paper N/A

pETM44 His6MBP-LZ (aa490-544 L539E) This paper N/A

pETM44 His6MBP-LZ (aa490-544 L542E) This paper N/A

pLip CM2 (aa1082-1148) This paper N/A

pLip CM2 (aa1082-1148 HCAA) This paper N/A

pLip CM2 (aa1082-1148 I1126E) This paper N/A

pLip CM2 (aa1082-1148 T1133E) This paper N/A

pLip CM2 (aa1082-1148 L1137E) This paper N/A

pWaldo PReM (aa403-608)-GFP-A206K This paper N/A

Software and Algorithms

ImageJ NIH Version 2.0.0

Prism GraphPad Version 7

Xia2 pipeline Winter, 2010 www.ccp4.ac.uk

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

AIMLESS Evans and Murshudov, 2013 www.ccp4.ac.uk

Phenix AutoSol Adams et al., 2010 www.phenix-online.org

Phenix Autobuild Terwilliger et al., 2013 www.phenix-online.org

Phenix.refine Adams et al., 2010 www.phenix-online.org

Phaser McCoy et al., 2007 www.phenix-online.org

Coot Emsley and Cowtan, 2004 www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/

Phenix ReadySet Adams et al., 2010 www.phenix-online.org

AutoPROC Vonrhein et al., 2011 www.globalphasing.com

TLSMD server Painter and Merritt, 2006 skuld.bmsc.washington.edu/�tlsmd/

Buccaneer Cowtan 2006 www.ccp4.ac.uk

Refmac Murshudov et al., 2011 www.ccp4.ac.uk

Molrep Vagin and Teplyakov, 2010 javascript:void(0);

PyMOL PyMOL www.pymol.org

ASTRA 6.1.1.17 software Wyatt www.wyatt.com/products/software/

astra.html

PSIPRED Buchan et al., 2013 bioinf.cs.ucl.ac.uk/psipred/

COILS Lupas et al., 1991 www.ch.embnet.org/software/

COILS_form.html

XtalPred-RF Slabinski et al., 2007 ffas.burnham.org/XtalPred-cgi/xtal.pl

ClustalX Larkin et al., 2007 www.clustal.org/clustal2/

SOCKET Walshaw and Woolfson, 2001 coiledcoils.chm.bris.ac.uk/socket/

server.html

Volocity 6.3 PerkinElmer Inc. cellularimaging.perkinelmer.com/

softWoRx 5.5.1 GE Healthcare Life Sciences www.gelifesciences.com/

softWoRx 6.1 GE Healthcare Life Sciences www.gelifesciences.com/

Other

Perkin Elmer ERS Spinning Disk confocal system PerkinElmer Inc. No longer available

DeltaVision Elite microscope GE Healthcare Life Sciences;

Micron Oxford

www.gelifesciences.com/

DeltaVision OMX V3 Blaze microscope GE Healthcare Life Sciences;

Micron Oxford

Cat#29065721

Zeiss 880 Airy-scan microscope Zeiss International; Micron Oxford www.zeiss.com
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jordan

Raff (jordan.raff@path.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly husbandry, stocks and handling
Drosophila melanogaster w67 flies (a wild-type line carrying a point mutation in the white gene) were used as a WT stock in all exper-

iments and yw flies were used as the parental stock in the generation of transgenic lines. Balancer chromosomes and markers used

have been described previously (Flybase, USA). Flies were kept at 25�C or 18�C on Drosophila culture medium (0.77% agar, 6.9%

maize, 0.8% soya, 1.4% yeast, 6.9% malt, 1.9% molasses, 0.5% propionic acid, 0.03% ortho-phosphoric acid and 0.3% nipagin).

Stocks were kept in 8 cm x 2.5 cm plastic vials or 0.25-pint plastic bottles. Embryos were collected on cranberry-raspberry juice

plates (25% cranberry-raspberry juice, 2% sucrose and 1.8%agar) supplemented with fresh yeast. Standard fly handling techniques

were employed (Roberts, 1998). In vivo studies were performed using 1.5-2 hr-old embryos (syncytial blastoderm stage). After 0-1 hr

collections at 25�C, embryoswere aged at 25�C for 1 hr.When injectingmRNA, embryoswere collected for 30min and aged for 1.5 hr

after mRNA injection. Prior to injection or imaging, embryos were dechorionated by using double-sided tape onto a slide and
e3 Cell 169, 1078–1089.e1–e7, June 1, 2017

mailto:jordan.raff@path.ox.ac.uk
http://www.ccp4.ac.uk
http://www.phenix-online.org
http://www.phenix-online.org
http://www.phenix-online.org
http://www.phenix-online.org
http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
http://www.phenix-online.org
http://www.globalphasing.com
http://skuld.bmsc.washington.edu/%7Etlsmd/
http://skuld.bmsc.washington.edu/%7Etlsmd/
http://www.ccp4.ac.uk
http://www.ccp4.ac.uk
http://www.pymol.org
http://www.wyatt.com/products/software/astra.html
http://www.wyatt.com/products/software/astra.html
http://bioinf.cs.ucl.ac.uk/psipred/
http://www.ch.embnet.org/software/COILS_form.html
http://www.ch.embnet.org/software/COILS_form.html
http://ffas.burnham.org/XtalPred-cgi/xtal.pl
http://www.clustal.org/clustal2/
http://coiledcoils.chm.bris.ac.uk/socket/server.html
http://coiledcoils.chm.bris.ac.uk/socket/server.html
http://cellularimaging.perkinelmer.com/
http://www.gelifesciences.com/
http://www.gelifesciences.com/
http://www.gelifesciences.com/
http://www.zeiss.com


mounted on a strip of glue onto a 35mmglass bottompetri dishwith a 14mmmicro-well (MatTek). After desiccation for 1min at 25�C,
embryos were covered in Voltalef oil (ARKEMA).

Organisms for in vitro studies
Escherichia coli cells were cultured in LB or TB medium (see Method details).

METHOD DETAILS

In vitro mRNA production and injection
ThemRNA injection assay we use here is based on that described previously (Novak et al., 2014). Full length Cnn was PCR amplified

from the cDNA (UniProt reference number: P54623-2) and sub-cloned into amodified pRNA destination vector (Conduit et al., 2014a)

using the Gateway cloning system (Life Technologies). The vector encodes a T3 RNA polymerase promoter and an N-terminal GFP

fusion tag. The deletion construct Cnn-DLZ, was generated using a Quikchange II XL mutagenesis kit (Agilent), by ‘looping out’ the

region of interest (aa490-544) on pRNA-GFP-Cnn. Cnn-DCM2 was PCR amplified from the cDNA (UniProt reference number:

P54623-2) and then sub-cloned into pRNA destination vector by the Gateway cloning system (Life Technologies). All the point mu-

tations described in the text were introduced into the cnn coding sequence by Quikchangemutagenesis, usingDrosophila-optimized

codons for each substituted residue. PReM domain Phospho-mimetic constructs were generated as described (Conduit et al.,

2014a). Primers used for cloning in this paper are listed in Table S2.

mRNA was synthesized in vitro using an mMESSAGE mMACHINE T3 Transcription Kit (Life Technologies) and purified using

RNeasy MinElute kit (QIAGEN). The mRNA concentration was adjusted to 2 mg/ml and injected into fly embryos collected from

cnnf04547/cnnHK21 hemizygous mutant mothers expressing a Spd-2-RFP fusion protein (Conduit et al., 2014a). The injected embryos

were incubated at 25�C for 60-90 min to allow translation of the GFP-fusion protein. Embryos collected from fly lines and unfertilized

eggs were collected similarly and incubated at 25�C for 60-90 min. Images were taken using a Perkin Elmer ERS spinning disk

(Volocity software) mounted on a Zeiss Axiovert microscope using a 63X/1.4NA oil immersion objective and an Orca ER CCD camera

(Hamamatsu Photonics, Japan).

Image analysis
We used ImageJ to calculate the average centrosomal fluorescence profile for the different Cnnmutants (both for fly lines andmRNA

injected embryos), where 5 centrosomes/embryo were analyzed, in at least 5 separate embryos. The profile for an individual centro-

some was calculated by finding the center of mass of the centrosome by thresholding the image and running the ‘‘analyze particles’’

(center of mass)macro on themost central Z plane of the centrosome as described (Conduit et al., 2014a).We then centered concen-

tric rings (spaced at 0.021 mmand spanning across 4.18 mm) on this center andmeasured the average fluorescence around each ring

(radial profiling). After subtracting the average cytosolic signal, each profile was normalized so the peak intensity of the WT GFP-Cnn

was equal to 1, and other protein types normalized to this value. The profile was then mirrored to produce a full centrosome profile.

The area under the curve was calculated using GraphPad Prism, and an average area for 5 centrosomes per embryo was calculated.

At least 5 embryos were used to calculate the average area under the curve for each protein, and an unpaired t test was performed to

assess the significance of any differences.

Transgenic Drosophila lines
All transgenic lines were generated by standard P-element mediated transformation (performed by the Fly Facility in the Department

of Genetics University of Cambridge). The GFP-Cnn and GFP-DCM2 lines used were crossed into a cnn mutant background.

Western blot analysis
Western blotting to estimate embryonic protein levels was performed as described previously (Novak et al., 2014). The following

primary antibodies were used for western blot analysis: mouse anti-GFP (1:500, Roche) and mouse anti-actin (1:1000, Sigma).

Anti-mouse IgG, HRP-linked (1:3000, GE Healthcare) secondary antibody was used.

Recombinant protein expression and purification
The LZ Apo protein

The cDNA sequence encoding Drosophila Cnn490-544 (the LZ domain) was subcloned into a pETM44 (EMBL) vector encoding an

N-terminal His6-MBP tag. Proteins were expressed in Escherichia coli (E. coli) B834 (DE3) strains in TB broth, and purified

using Ni-NTA chromatography followed by size exclusion chromatography (50 mM Tris-HCl pH8.0, 150 mM NaCl, 5 mM

b-mercaptoethanol). For SEC-MALS analysis and crystallization trials, the N-terminal MBP tag was cleaved off using GST-3C pro-

tease, dialyzed into 50 mM Tris-HCl pH7.5, 300 mM NaCl, 5 mM b-mercaptoethanol at 4�C overnight. The untagged protein was

further purified via reverse Ni-NTA chromatography and size exclusion chromatography (50 mM Tris-HCl pH7.5, 150 mM NaCl,

5 mM b-mercaptoethanol).
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The CM2 Apo protein

The cDNA sequence encoding Drosophila Cnn1082-1148 (the CM2 domain) was subcloned into a custom ‘‘pLip’’ vector (Cottee et al.,

2013). This vector encodes a T7 polymerase promoter site and two, TEV protease cleavable, His-tagged lipoyl domains (fromBacillus

stearothermophilus dihydrolipoamide acetyltransferase) that flank the insert. Note that a stop codon (TAA) was included at the 30 end
of DNA fragment encoding CM2 domain hence the expressed fusion protein contains a single lipoyl domain at the N terminus. Pro-

teins were expressed in Escherichia coli (E. coli) C41 (DE3) strains in LB broth, and purified using Ni-NTA chromatography. The lipoyl

domain was cleaved off the fusion protein with TEV protease, followed by size exclusion chromatography (50 mM Tris-HCl pH7.0,

200 mM NaCl, 5 mM b-mercaptoethanol). The untagged construct contains a GGS motif at the N terminus. Initial protein construct

has two lipoyl domains tagged at each terminus, and the final construct, after TEV proteolytic cleavage, contains a GGS motif at the

N terminus as well as an EFGENLYFQ motif at the C terminus, which are the remnants of the protease cleavage sites. This protein

sample was used to set up the initial crystallization trays, from which the phasing crystals were obtained. In anticipation of the high

flexibility of the C-terminal motif, a new construct was designed and cloned with a stop codon included at the 30 end of the insert (see

above). This construct was much more soluble and was used for further crystallization trials, eventually yielding the dataset used for

refinement of the CM2 structure.

The LZ-CM2 complex

To generate complexes between CM2 andMBP-LZWT or L535E, the purified CM2 was incubated with excess of either the MBP-LZ

WT or L535E in 50 mM Tris pH7.5, 150 mM NaCl, 5 mM b-mercaptoethanol at 4�C for 3 hr. GST-3C protease was then added

to remove the His6-MBP tag from the resulting complexes (dialyzed into 50 mM Tris-HCl pH7.5, 200 mM NaCl, 5 mM b-mercaptoe-

thanol at 4�C overnight), and was further purified via reverse Ni-NTA chromatography and size exclusion chromatography (50 mM

Tris-HCl pH7.5, 150 mM NaCl, 5 mM b-mercaptoethanol).

The MBP-PReM protein

The Cnn-PReM (aa403-608) fragment was cloned into a pETM44 (EMBL) vector encoding an N-terminal His6-MBP tag. Protein was

expressed using Escherichia coli (E. coli) B834 (DE3) strains in TB broth. Ni-NTA chromatography was carried out to purify the ex-

pressed fusion protein, followed by size exclusion chromatography. Purification buffer contains 50 mM Tris-HCl pH7.5, 150 mM

NaCl, 5 mM b-mercaptoethanol.

The PReM-GFP protein

The Cnn-PReM (aa403-608) fragment was cloned into a custom pWaldo-GFP-A206K vector (point mutation introduced to stop GFP

dimerization in solution). This vector encodes a T7 polymerase promoter site and a C-terminal GFP tag followed by 6 Histidine res-

idues. Protein was expressed in Escherichia coli (E. coli) B834 (DE3) strains in TB broth, and purified using Ni-NTA chromatography

followed by size exclusion chromatography (50 mM Tris-HCl pH7.5, 150 mM NaCl, 5 mM b-mercaptoethanol).

Crystallization
The LZ-CM2 complex

Purified LZ-CM2 protein was dialyzed into 20 mM Tris-HCl pH7.0, 150 mM NaCl, 10 mM ZnCl2, 1 mM TCEP at 4�C overnight. For

setting up crystallization trials, protein complexes of various lengths were concentrated to 9.18 mg/ml for Cnn490-544+CM2,

10.21 mg/ml or 20 mg/ml for Cnn490-544 L535E+CM2 and 69.65 mg/ml for Cnn490-567+CM2. The commercialized screens from

Molecular Dimensions were used for crystallization. The protein concentrationswere determined from absorption at 280 nm. Crystals

typically grow to their maximal size after 3 days at 21�C in sitting drops, and were fished and flash frozen in liquid nitrogen using

ethylene glycol (EG) as a cryo-protectant. LZ-CM2 complexes of various lengths were crystallized in multiple conditions, which

are summarized in Table S1. Cnn490-544+CM2 and Cnn490-544 L535E+CM2 protein complexes crystallized bymixing 300 nL of protein

solution with 100 nL of mother liquor; Cnn490-567+CM2 crystallized by mixing 150 nL of protein solution with 150 nL of mother liquor.

The CM2 apo domain

Purified apo-CM2 protein was dialyzed into 20 mM Tris-HCl pH7.0, 200 mM NaCl, 10 mM ZnCl2, 1 mM TCEP at 4�C overnight,

and concentrated to 3 mg/ml (construct with C-terminal EFGENLYFQ motif - phasing crystals) or 40 mg/ml (construct lacking above

motif – refinement dataset crystals). Crystals of apo-CM2 were grown out either immediately or after overnight at 21�C in sitting

drops, and were fished and flash frozen in liquid nitrogen. The crystal, fromwhich the phase information was derived, grew in an opti-

mization screen, using 225 nL protein solution and 75 nL of mother liquor (100 mM HEPES mix (50% pH6.5, 50% pH7.5), 200 mM

CaCl2, 18%w/v PEG6K). 20% v/v EG in the mother liquor served as a cryo-protectant. The best diffracting crystal, used for structure

refinement, grew in a condition containing 150 nL protein solution and 50 nL of mother liquor (80 mM Sodium cacodylate pH6.5,

160 mM Calcium acetate, 14.4% w/v PEG8K/ 20% v/v glycerol). The mother liquor itself was used as a cryo-protectant.

Data collection and processing
The CM2 apo domain

The Cnn-CM2 dataset used for phasing was collected at Diamond beamline I04, at a wavelength of 1.2822 Å. Data were processed

using Xia2 pipeline (Winter, 2010) in the 3daii mode (using XDS) (Kabsch, 2010) and AIMLESS (Evans and Murshudov, 2013), and

were indexed to space group P6122. A single zinc site was located using Phenix AutoSol (Adams et al., 2010). Phenix Autobuild (Ter-

williger et al., 2013) was used for initial modeling, and the structure was refined in Phenix.refine (Adams et al., 2010). Higher resolution

data for refinement and rebuilding were later collected at Diamond beamline I04, at 0.9793 Å wavelength in space group P61, with two
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copies of the initial dimer model placed using Phaser (McCoy et al., 2007). Refinement was then carried out in Phenix.refine (Adams

et al., 2010) using TLS refinement, and manual rebuilding was performed in Coot (Emsley and Cowtan, 2004). Metal coordination

restraints were generated using ReadySet in Phenix (Adams et al., 2010), to restrain the zinc coordinates. In the final structure, three

N-terminal residues (remnants of the protease cleavage site) and eight C-terminal residues (Arg1141-Leu1148) could not be traced

due to missing electron density.

The LZ-CM2 complex

Initial phasing of the LZ:CM2 was carried out using crystals grown from the LZ490-552 protein (CF-1, Table S1). Data were collected at

ESRF beamline ID23-1 and processed using the online autoPROC in the spacegroup P212121 (Vonrhein et al., 2011). Phenix AutoSol

initially found seven requested zinc sites (later refined to 2 zincs and 1 iodide). The phases and initial model from this were used to

build amore complete model by iteration through Buccaneer (Cowtan, 2006), Refmac (Murshudov et al., 2011) and Coot (Emsley and

Cowtan, 2004). The model produced by this process was then used molecular replacement using Phaser (McCoy et al., 2007) or

Molrep (Vagin and Teplyakov, 2010) to search the other crystal forms (Table S1, CF-2/3/4). Successful MR solutions were subjected

to iterative manual building/refinement using Coot and Phenix.refine. TLS parameters were assessed using the TLSMD server

(Painter and Merritt, 2006).

SEC-MALS analysis
Samples were dialyzed into 50 mM Tris-HCl pH7.5, 150 mM NaCl, 10 mMZnCl2, 5 mM b-mercaptoethanol. 100 mL of protein sample

was injected onto an S75 10/300 column (GE Healthcare). For SEC-MALS analysis of MBP-PReM assemblies (apo or with the addi-

tion of CM2WT or point mutants), 100 mL of protein sample was injected onto a Superose 6 column (GE Healthcare). Light scattering

and refractive index were measured using a Dawn Heleos-II light scattering detector and an Optilab-TrEX refractive index monitor.

Analysis was carried out using ASTRA 6.1.1.17 software assuming a dn/dc value of 0.186 ml/g.

Circular Dichroism
Samples were dialyzed into 10 mM NaxHxPO4 pH 7.5, 0.5 mM TCEP. Buffer subtracted, averaged spectra (4 accumulations) were

taken for each sample at 20�C, using a Jasco J-815 instrument. For all the LZ andCM2 constructs, spectra were collected at a protein

concentration of 0.2 mg/ml. To further test concentration-dependent folding, additional spectra were collected at 0.6 mg/ml for the

LZ WT and point mutant constructs. For the LZ L535E mutant, CD spectra were also collected at 0.8 mg/ml, although the detector

was saturated at wavelengths longer than 205 nm and hence the data could not be used for reliable comparison (see Figure S4D).

In vitro Cnn network assembly, imaging and analysis
For the experiments in Figure 5D, assembly reactions were set up bymixing purified PReM-GFP and CM2 or its mutant form (I1126E,

T1133E and L1137E) at equimolar concentrations (20 mM) in 50mM Tris-HCl pH7.5, 150mMNaCl, 5 mM b-mercaptoethanol at room

temperature. 0.2 mm red fluorescent polystyrene beads (Invitrogen; pre-blocked with BSA) were added to each reaction at 10,000X

dilution to aid in finding the focal plane. 2 mL of each reaction was pipetted, immediately after mixing, onto a non-frosted cover slide,

then covered with 18 3 18 mm cover glass (VWR). Networks were visualized using a Zeiss 880 microscope fitted with Airyscan

detector using a 63x 1.4NA lens. Images were airyscan-processed in 2D with a strength value of Auto (�6). We used the ‘Analyze

Particles’ function of ImageJ to measure the area of Cnn networks, summing the all pixels with intensities above a background

threshold. 10 imageswere taken to generate an average network area for each construct. Fluorescence Recovery After Photobleach-

ing (FRAP) of in vitro Cnn network assemblies was carried out using a Zeiss 880 Airyscan system configured as above. The Cnn

network was bleached using 10 iterations of 100% 488 nm laser light on region of interest, and recovery assessed after a 20 min

recovery period.

For the experiments in Figure 5G, 10 mMof PReM-GFP pre-incubated with Plk1 kinase (see below) wasmixedwith 10 mMof CM2 in

kinase buffer (50mMHEPES pH 7.5, 50mMKCl, 10mMMgCl2, 15mMEGTA, 20mMsodium b-glycerophosphate, 0.2mMATP, and

1 mM DTT). 0.2 mm red fluorescent polystyrene beads (Invitrogen; pre-blocked with BSA) were added to each reaction at 10,000X

dilution to aid in finding the focal plane. 2 mL of total reaction was pipetted onto a non-frosted cover slide, at 3 min time intervals, then

covered with 183 18 mm cover glass (VWR). Networks were imaged at room temperature using a DeltaVision system (Applied Pre-

cision) comprising a wide-field inverted microscope (IX71; Olympus) with 40x/0.95NA Plan Apo objective lens (Olympus) and stan-

dard Chroma filter sets. Images were captured using an Evolve EM-CCD camera (Photometrics) and Softworx analysis software

(Applied Precision). Images were stitched together and analyzed in ImageJ. Images at the last time point in Plk1 pre-incubated re-

action were first thresholded to exclude the background, and this threshold value was then applied to all images at other time points.

The same value was used for non-phosphorylated control. We used the ‘Analyze Particles’ function in ImageJ to measure the area of

Cnn networks, summing all pixels with intensities above the background threshold. 3 independent experiments were carried out, and

the mean value was plotted against time with error bars showing the standard deviation (SD).

Antibody production
The anti-pS567-Cnn rabbit antibody was raised against the phospho-peptide: R-R-N-A-M-R-K-A-V-D-R-pS-L-D-L—where pS rep-

resents the Ser567 residue that was phosphorylated in the peptide. The Ser567 residue is in the PReM domain and was shown by

Mass Spectroscopy to be phosphorylated on Cnn isolated from purified centrosomes but not on Cnn isolated from the cytosol
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(Conduit et al., 2014a) (unpublished observations). Antibodies were purified against the phospho-peptide and non phospho-specific

antibodies were removed by purification against the non-phosphorylated peptide. Peptide production, antibody production and anti-

body purification was performed by Pocono Rabbit Farm and Laboratory Inc. (USA).

In vitro Plk1 kinase assay
20 mM of purified PReM-GFP protein and 0.055 mg/ml Plk1 kinase (ProQinase) was added to kinase buffer in a reaction volume of

20 ml. The reaction was then left at 30�C for 30 min. Plk1 kinase was originally stored in 50 mM HEPES pH 7.5, 100 mM NaCl, 5 mM

DTT, 15 mM reduced glutathione, 20% glycerol; therefore, for the non-phosphorylated control equal volume of kinase storage buffer

was added to the above reaction instead of Plk1 kinase. The proteins were then analyzed on a dot blot by pipetting 2 mL of 100-fold

diluted reaction onto a nitrocellulose membrane (BioRad). The membrane was blocked in PBS + 4% milk + 0.1% Tween20 for 1 hr,

and was probed using rabbit anti-Cnn-pS567 antibody (Pocono Rabbit Farm&Laboratory; 1:500 dilution) and anti-rabbit horseradish

peroxidase (HRP) (GE Healthcare; 1:3,000 dilution). In order to confirm equal loading of both reactions, the dot blot was also probed

using mouse anti-GFP (Roche; 1:500 dilution) and anti-mouse HRP (GE Healthcare; 1:3,000 dilution).

3D-Structured Illumination Microscopy
Embryos were fixed as described (Stevens et al., 2010) and stained using a sheep anti-Cnn antibody at a 1:500 dilution (Cottee et al.,

2013) and a rabbit anti-Cnn-pS567 antibody at 1:500 dilution, followed by Alexa 488nm anti-sheep and Alexa 594nm anti-rabbit sec-

ondary antibodies at 1:1000 dilution. 3D-SIM microscopy was performed and analyzed as described (Conduit et al., 2014b) on an

OMX V3 Blaze microscope (GE Healthcare, UK) with a 60x / 1.42 NA oil UPlanSApo objective (Olympus). The images shown are

maximum intensity projections of 17 z-slices. Images from the different color channels were registered with alignment parameters

obtained from calibration measurements with 0.2 mmdiameter TetraSpeck beads (Life Technologies) using the OMX Editor software.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of all experiments are reported in the figure legends and figures, including statistical analysis performed, sta-

tistical significance and exact n numbers. Statistical significance was assessed using an unpaired t test with Welch’s correction (not

assuming equal SDs) in GraphPad Prism (*p < 0.05;**p < 0.01;***p < 0.001;****p < 0.0001). All values are represented as mean ± SD.

DATA AND SOFTWARE AVAILABILITY

The atomic coordinates of various Cnn LZ-CM2 complexes have been deposited with the accession numbers PDB: 5MVW, 5MW0,

5MW9, 5MWE, and 5I7C.
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Supplemental Figures

Figure S1. CM2 Assembles into a Helical Dimer in Solution that further Assembles into an Antiparallel Tetramer In Crystallo, Related to

Figures 2 and 4

(A) An extended Multiple Sequence Alignment (MSA) of the CM2 domain: boxed residues are visible in the crystal structures. Residues that have been subjected

to mutational analyses are highlighted with asterisks: color corresponds to the color illustrated in the crystal structures.

(B) Cartoon representation of the CM2 dimer, and space-filling diagram of the CM2 tetramer formed in crystallo. Several conserved residues are highlighted

in color.

(C) SEC-MALS analysis of the purified CM2 domain at different concentrations, illustrating that the protein forms a stable dimer with little tendency to form higher-

order oligomers even at high protein concentrations.



Figure S2. The Zn2+ Ion in the CM2 Dimer Is Required for CM2 Dimerization In Vitro and Efficient Cnn-Scaffold Assembly In Vivo, Related to

Figures 2 and 4

(A) SEC-MALS analysis of WT-CM2 in buffer without (black) or with (brown) EDTA, or a mutant form of CM2 in which the Zn2+ coordinating His and Cys residues

have been mutated to Ala (CM2-HCAA). Removing the Zn2+ or mutating the Zn2+ binding residues causes the purified CM2 to behave as a monomer.

(B) Micrographs illustrate and graphs quantify the centrosomal localization of WT-GFP-Cnn, GFP-Cnn-DCM2 and GFP-Cnn-HCAA; Spd-2-RFP is shown as a

centrosomal marker. Error bars represent the SD of the mean from at least 5 embryos. Statistical significance (compared to WT [above each bar] or Cnn-DCM2

[line at the top of the graph]) was assessed using an unpaired t test in GraphPad Prism (****p < 0.0001). Scale bar = 2 mm.



Figure S3. The LZ Domain Contains Cys Residues that Form Disulphide Bonds in the Crystal Structure, Related to Figure 2

A side-on view showing the Cys residues that form disulphide bonds in the LZ portion of the LZ:CM2 structure.



Figure S4. A Circular Dichroism Analysis of WT and Mutant CM2 and LZ Proteins, Related to Figure 3

(A) Circular Dichroism (CD) analysis showing that the WT-CM2 and various mutant-CM2 proteins are all largely helical in nature.

(B) CD analysis showing that theWT-LZ protein is largely helical in nature, but the helical nature of the various mutant-LZ proteins is disrupted to varying degrees.

The top traces show a single analysis for each protein at 0.2 mg/ml, while the bottom traces compare the analysis for each protein at 0.2 mg/ml (solid lines) and

0.6mg/ml (dotted lines). This analysis reveals that none of the proteins show a tendency to becomemore helical at higher concentrations. This is important, as the

helicity of the L535E mutant (red line) is strongly disrupted, yet the crystal structure reveals that this protein is largely helical when bound to CM2 (Figures 4D and

4E); this strongly suggests that binding to CM2 can induce the proper folding of the LZ domain, a result that supports the idea that CM2 can bind to and stabilize a

partially unwound PReM domain (Figure 6).

(C) CD analysis of LZ-L535E at 0.8 mg/ml showing the ellipticity (red line) and the HT voltage (black line). Also marked is a line representing the HT voltage

threshold for reliable signal (700 V). At this concentration the detector signal becomes unreliable at 205 nm, close to the first negative for a-helical signal at 208 nm.



Figure S5. SEC-MALS Analysis of Various Mutant LZ or Mutant CM2 Proteins and Mutant LZ:CM2 Complexes, Related to Figure 3

(A–E) SEC-MALS analyses of the additional LZ and CM2 mutants whose behavior is summarized, but not shown, in Figure 3. CM2-I1126E (A), CM2-L1137E (B),

LZ-L532E (C), LZ-L539E (D), LZ-L542E (E).



Figure S6. SEC-MALS Analysis of PReM-Domain Binding to Mutant CM2 Proteins, Related to Figure 5

(A and B) SEC-MALS analyses showing the inability of the CM2 mutants CM2-I1126E (A) and CM2-L1137E (B) to bind MBP-PReM.
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