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Abstract Centrosomes have many important functions and comprise a ‘mother’ and ‘daughter’

centriole surrounded by pericentriolar material (PCM). The mother centriole recruits and organises

the PCM and templates the formation of the daughter centriole. It has been reported that several

important Drosophila PCM-organising proteins are recruited to centrioles from the cytosol as part of

large cytoplasmic ‘S-CAP’ complexes that contain the centriole protein Sas-4. In a previous paper

(Conduit et al., 2014b) we showed that one of these proteins, Cnn, and another key PCM-organising

protein, Spd-2, are recruited around the mother centriole before spreading outwards to form a

scaffold that supports mitotic PCM assembly; the recruitment of Cnn and Spd-2 is dependent on

another S-CAP protein, Asl. We show here, however, that Cnn, Spd-2 and Asl are not recruited to the

mother centriole as part of a complex with Sas-4. Thus, PCM recruitment in fly embryos does not

appear to require cytosolic S-CAP complexes.

DOI: 10.7554/eLife.08483.001

Results

The centrosomal recruitment of Sas-4, Cnn and Spd-2 differs in space
and time
Centrosomes are crucial cell organisers (Nigg and Raff, 2009; Arquint et al., 2014; Chavali et al.,

2014; Reina and Gonzalez, 2014; Stinchcombe and Griffiths, 2014). We previously showed that Cnn

and Spd-2 are initially recruited around mother centrioles and then spread outward to form an

extended pericentriolar material (PCM) scaffold (Conduit et al., 2010, 2014a, 2014b) (Note that we

define ‘recruitment’ here as when a new protein molecule is added into the centrosome from the

cytosol, irrespective of whether this molecule replaces an existing molecule or adds to the existing

pool of molecules). Cnn has previously been identified as part of a multi-protein ‘S-CAP’ complex,

which pre-assembles in the cytosol with the centriole protein Sas-4 before being recruited into the

centrosome via a Sas-4–centriole interaction (Gopalakrishnan et al., 2011, 2012; Zheng et al., 2014).

We reasoned, therefore, that Cnn and Spd-2 molecules might initially be recruited to the centrioles in

S-CAP complexes, but could then be released from the centriolar-Sas-4 to spread outwards through

the PCM. To test this possibility we compared the spatiotemporal centrosomal recruitment of Sas-4 to

Cnn or Spd-2 in living Drosophila syncytial embryos, where S-CAP complexes were initially identified

(Gopalakrishnan et al., 2011). These embryos cycle rapidly between S- and M-phases with no gap

phases, and the mother centrioles organise large amounts of PCM throughout both S- and M-phases;

during S-phase, each mother centriole also assembles a new daughter centriole (Figure 1A).

We co-expressed Sas-4-mCherry with either GFP-Cnn or Spd-2-GFP and performed two-colour

Fluorescence Recovery After Photobleaching (two-colour FRAP) on a spinning disk confocal
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Figure 1. The centrosomal recruitment of Sas-4, Cnn and Spd-2 differ in space and time. (A) A schematic illustration

of the centrosomal events that occur during S-phase in Drosophila syncytial embryos. The mother centriole (‘m’)

constantly organises pericentriolar material (PCM, green) and also templates the formation of a new daughter

centriole (‘d’) that grows throughout S-phase. (B) Images show how GFP-Cnn (top row, green in bottom row) and

Sas-4-mCherry (middle row, red in bottom row) fluorescence signals recover after photobleaching. Time in seconds

before and after photobleaching (t = 0 s) is shown in the top right of each panel. (C) The graph shows the normalised

average recovery profiles of GFP-Cnn (green) and Sas-4-mCherry (red) 60 s after bleaching (n = 10 centrosomes from

10 embryos). Each profile is normalised so its maximum signal equals one and plotted taking into account the

average spatial offset between the two signals—∼0.21 μm—see (H). The inset image shows the average fluorescent

signals of GFP-Cnn (green) and Sas-4-mCherry (red) overlaid taking into account their average spatial offset.

Figure 1. continued on next page
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microscope. We first examined the centrosomal recruitment of these proteins from the cytosol during

S-phase (Figure 1B,D; Videos 1, 2). Prior to photobleaching, Sas-4-mCherry appeared as a single

tight spot, presumably localising to the two centrioles (Gopalakrishnan et al., 2011; Fu and Glover,

2012; Mennella et al., 2012), which cannot be resolved with a standard confocal microscope; GFP-

Cnn and Spd-2-GFP occupied a relatively broad area around the centrioles (Figure 1B,D; t = −30 s),

consistent with their known PCM localisation (Conduit et al., 2014b). The centrosomal fluorescence

of all three proteins recovered after photobleaching, but we noticed that the recovering GFP and

mCherry signals were not aligned in the X-Y plane (Figure 1B,D; t = 60–180 s). We plotted the relative

positions of the recovering signals after using fluorescent beads to adjust for any systemic shift

between the green and red channels (Figure 1H; Figure 1—source data 1; see ‘Materials and

methods’), and calculated the average distance between the recovering signals: at 60 s post

bleaching, recovering Sas-4-mCherry was offset from recovering GFP-Cnn by an average of ∼0.21 μm
(blue dots, Figure 1H) and from recovering Spd-2-GFP by an average of ∼0.17 μm (orange dots,

Figure 1H). In contrast, the recovering Spd-2-GFP signal was offset from the recovering RFP-Cnn

signal by an average of only ∼0.053 μm (purple dots, Figure 1H). We illustrate these differences by

displaying the average fluorescence profiles of each pair of markers offset by the average distance

between each marker at 60 s post-bleaching (Figure 1C,E,G).

During S-phase, an excess of Sas-4 is recruited to centrioles, and a large fraction of these molecules

become irreversibly incorporated into newly forming daughter centrioles, while the remainder is later

shed from the centrioles during mitosis (Novak et al., 2014). We wondered, therefore, if the

offset between the Sas-4-mCherry and GFP-Cnn or Spd-2-GFP recovering signals was a result of

Figure 1. Continued

(D–G) Images (D, F) and graphs (E, G) depict the same data as in (B) and (C) but for either Spd-2-GFP (green) and

Sas-4-mCherry (red) (D, E) or for Spd-2-GFP (green) and RFP-Cnn (red) (F, G). (H) The graph shows the position of

each GFP signal at 60 s post bleaching relative to the position of the mCherry/RFP signal (always positioned at 0; 0)

for each combination of proteins, as indicated. Each dot represents a single centrosome.

DOI: 10.7554/eLife.08483.002

The following source data is available for figure 1:

Source data 1. Measuring the spatial offset between recovering GFP-Cnn and Sas-4-mCherry, Spd-2-GFP and Sas-

4-mCherry, and Spd-2-GFP and RFP-Cnn during S-phase.

DOI: 10.7554/eLife.08483.003

Video 1. Recovery dynamics of GFP-Cnn and Sas-

4-mCherry during S-phase. This video shows the

fluorescent signals of GFP-Cnn (left panel) and

Sas-4-mCherry (right panel) recovering during S-phase

after photobleaching at t = 0 s. Both signals are

detectable 30 s after photobleaching and continue to

increase in intensity thereafter. The GFP-Cnn signal

initially recovers centrally and then spreads outwards, as

described previously (Conduit et al., 2010, 2014a,

2014b), whereas the Sas-4-mCherry signal recovers as a

single tight focus and does not spread outwards.

DOI: 10.7554/eLife.08483.004

Video 2. Recovery dynamics of Spd-2GFP and Sas-

4-mCherry during S-phase. This video shows the

fluorescent signals of Spd-2-GFP (left panel) and

Sas-4-mCherry (right panel) recovering during S-phase

after photobleaching at t = 0 s. Both signals are

detectable 30 s after photobleaching and continue to

increase in intensity thereafter. The Spd-2-GFP signal

initially recovers centrally and then spreads outwards, as

described previously (Conduit et al., 2014b), whereas

the Sas-4-mCherry signal recovers as a single tight focus

and does not spread outwards.

DOI: 10.7554/eLife.08483.005
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Sas-4-mCherry being largely recruited to daughter centrioles and GFP-Cnn and Spd-2-GFP being

largely recruited around mother centrioles.

As an initial test of this hypothesis, we performed two-colour FRAP experiments in M-phase, when

centriole duplication has been completed. After photobleaching, the centrosomal GFP-Cnn and

Spd-2-GFP signals recovered immediately, while the Sas-4-mCherry signal only began to recover

robustly after the centrosomes separated at the end of mitosis—when a new round of centriole

duplication begins (Figure 2; Videos 3, 4; Figure 2—source data 1). These findings are consistent

with our hypothesis that Sas-4 molecules are only recruited to growing daughter centrioles, and they

strongly suggest that the Cnn and Spd-2 molecules that are recruited around mother centrioles during

M-phase are not recruited there as part of a complex with Sas-4.

Super-resolution microscopy confirms that Sas-4 molecules are recruited
exclusively to growing daughter centrioles
In order to directly test if Sas-4 molecules are only recruited to growing daughter centrioles, we

turned to 3D-Structured Illumination Microscopy (3D-SIM), which has approximately twice the spatial

resolution of standard confocal microscopy. Using 3D-SIM in living embryos, we could clearly

distinguish two adjacent Sas-4-GFP foci at individual centrosomes during S-phase (Figure 3A, t = −20 s),

presumably representing mother-daughter centriole pairs. We combined 3D-SIM with FRAP (Conduit

et al., 2014b) and found that the Sas-4-GFP signal only recovered at a single foci (Figure 3A, t = 120 s

to t = 280 s). We confirmed that this recovery occurred at the daughter centriole by performing a

two-colour-3D-SIM-FRAP experiment in embryos co-expressing Sas-4-GFP and Asl-mCherry, as Asl

forms a toroid around only the mother centrioles (Figure 3B, t = −30 s) (Novak et al., 2014).

Strikingly, the recovering Sas-4-GFP fluorescence always lay outside of the Asl-mCherry toroid

(Figure 3B, t = 300 s), whereas control unbleached centrosomes still contained two Sas-4-GFP foci,

one of which lay inside the Asl-mCherry toroid (Figure 3C, t = 300 s). This suggested that new Sas-4

molecules are recruited only to the daughter centrioles. However, during acquisition centrosomes

move in the x-y plane, and given that the green and red channels are acquired sequentially on this

particular imaging system it is possible for the green and red signals to become misaligned. To be

sure the recovering Sas-4-GFP signal represented the daughter centriole, rather than a mis-positioned

mother centriole, we therefore measured the distance between the centre of the Asl-mCherry signal

and the centres of the pre- and post-bleached Sas-4-GFP signals (Figure 3D; Figure 3—source data 1).

This revealed that the average position of the post-bleached Sas-4-GFP signal closely matched the

position of the daughter Sas-4-GFP signal, but not the mother Sas-4-GFP signal (Figure 3E), confirming

that Sas-4 molecules are recruited only to daughter centrioles. As Asl molecules are known to turn over

at the mother centriole at this stage in the cycle (Novak et al., 2014), their recruitment cannot occur as

part of Sas-4 dependent S-CAP complexes.

We next performed a similar two-colour 3D-SIM FRAP experiment in embryos expressing

Spd-2-GFP and Sas-4-mCherry. Here, the recovering Sas-4-mCherry foci lay adjacent to the

recovering Spd-2-GFP signal (Figure 3F, t = 300 s), which is known to initially recover as a toroid

around the mother centriole before spreading outwards in a fibrous network (Conduit et al.,

2014b). Unbleached centrosomes still contained two Sas-4-mCherry foci, one of which lay at the

centre of the Spd-2-GFP network (Figure 3G, t = 300 s). Together, these observations

demonstrate that in these embryos Sas-4 is only recruited to growing daughter centrioles, while

Asl and Spd-2 are recruited only around mother centrioles.

S-CAP complexes are of low abundance in the early embryonic cytosol
We next analysed the abundance of potential S-CAP complexes in syncytial embryos. We expressed a

Sas-4-GFP construct at near endogenous levels in embryos lacking endogenous Sas-4—this construct

is functional as it rescues the Sas-4 mutant phenotype (Novak et al., 2014). From these embryos we

produced extracts where the centrosomes had been removed by centrifugation, immunoprecipitated

Sas-4-GFP using anti-GFP coated beads and then examined the relative proportion of bound and

unbound S-CAP complex proteins. This approach had two advantages over immunoprecipitating

endogenous Sas-4 with anti-Sas-4 antibodies: (1) anti-GFP antibodies are less likely to perturb S-CAP

complex assemblies; (2) we could perform negative controls using wild-type extracts that did not

contain any Sas-4-GFP protein.
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Figure 2. Cnn and Spd-2, but not Sas-4, are recruited to centrosomes during M-phase. (A) A schematic illustration of

the centrosomal events that occur during M-phase (purple arrow) and the following S-phase (orange arrow) in

Drosophila syncytial embryos. The mother centriole (‘m’) organises the PCM (green) and remains ‘engaged’ to its

fully formed daughter centriole (‘d’) until late M-phase. During late M-phase the centrioles disengage and the

daughter centriole matures into a mother and starts to organise its own domain of PCM. At the start of the following

S-phase, both the old and new mother centrioles template the formation of a new daughter centriole. (B, C) Images

show how GFP-Cnn (top row in B, green in bottom row), Spd-2-GFP (top row in C, green in bottom row) and

Sas-4-mCherry (middle rows in B and C, red in bottom rows) fluorescence signals recover after photobleaching

during M-phase and the following S-phase. Time in seconds before and after photobleaching (t = 0 s) is shown in the

top right of each panel. Note how the GFP-Cnn (B) and Spd-2-GFP (C) signals recover immediately after

photobleaching, but that a recovering Sas-4-mCherry signal can only be detected once the embryos enter the

following S-phase (and initiate a new round of centriole duplication). (D) A graph showing the fluorescence recovery

over time of Sas-4-mCherry (red), GFP-Cnn (light green) and Spd-2-GFP (dark green) relative to their initial

fluorescence values. Measurements were taken in the region of the centrosome where the fluorescent signals

overlapped. The arrow indicates the sudden change in the recovery dynamics of the Sas-4-mCherry signal.

DOI: 10.7554/eLife.08483.006

Figure 2. continued on next page
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As expected, we saw a strong depletion of Sas-4-GFP from the Sas-4-GFP extract (compare lanes 2

and 4, Figure 4A) and a strong enrichment of Sas-4-GFP in the Sas-4-GFP bound sample (lane 6,

Figure 4A). In contrast, the negative control showed no depletion of endogenous Sas-4 from the wild-

type extract (compare lanes 1 and 3, Figure 4A), or enrichment of endogenous Sas-4 in the wild-type

bound sample (lane 5, Figure 4A). Cnn, γ-tubulin, pericentrin-like-protein (PLP) and Asl (the other

characterised components of the S-CAP complexes), were not obviously co-depleted with Sas-4-GFP

from the extract (compare lanes 2 and 4, Figure 4B–E), although we reliably detected small amounts

of Cnn and γ-tubulin in the Sas-4-GFP bound samples (compare lanes 5 and 6, Figure 4B,C). A small

amount of Asl was also detectable in the Sas-4-GFP bound sample, but this was also seen in the

control bound sample (compare lanes 5 and 6 in Figure 4D). We conclude that only a very small

fraction of Cnn and γ-tubulin molecules form cytosolic complexes with Sas-4 in these embryo extracts,

while any interaction between Sas-4 and Asl or PLP is undetectable with these methods. Thus, the

previously described S-CAP complexes are either absent or present at very low levels in these embryo

extracts.

Concluding remarks
Our results suggest that S-CAP complexes do not play a significant role in mitotic PCM assembly in

Drosophila syncytial embryos. In support of this conclusion, previous reports have shown that

centrioles in Drosophila cells lacking cytosolic Sas-4 can recruit PCM during mitosis (Stevens et al.,

2007; Riparbelli and Callaini, 2011), and this also appears to be true in Caenorhabditis elegans

embryos (Kirkham et al., 2003; Leidel and Gönczy, 2003) and in HeLa cells (Kitagawa et al., 2011).

Moreover, SPD-2 and SPD-5, the likely functional homologues of Spd-2 and Cnn, exist mostly as

monomers in the cytosol of C. elegans embryos and do not detectably interact with Sas-4 (Wueseke

et al., 2014). Thus, the mechanism of mitotic PCM assembly in flies, worms and human cells does not

appear to involve the pre-assembly of Sas-4-dependent cytosolic PCM complexes. Importantly, Sas-4

may have a more indirect role in mitotic PCM assembly in fly embryos as centriolar Sas-4 (as opposed

Figure 2. Continued

The following source data is available for figure 2:

Source data 1. A comparison of the centrosomal fluorescence recovery after photobleaching of GFP-Cnn,

Spd-2-GFP and Sas-4-mCherry during M-phase and the following S-phase.

DOI: 10.7554/eLife.08483.007

Video 3. Recovery dynamics of GFP-Cnn and Sas-4-

mCherry during M-phase/S-phase. This video shows

the fluorescent signals of GFP-Cnn (left panel) and

Sas-4-mCherry (right panel) recovering during

M-phase and then during the following S-phase; the

centrosome was bleached at t = 0 s in M-phase.

The GFP-Cnn signal is detectable 30 s after photo-

bleaching and continues to increase during M-phase and

the following S-phase, when the centrosome divides into

two. The Sas-4-mCherry signal, however, only becomes

detectable 270 s after photobleaching, once the embryo

has transitioned from M-phase into the following S-phase.

DOI: 10.7554/eLife.08483.008

Video 4. Recovery dynamics of Spd-2-GFP and Sas-4-

mCherry during M-phase/S-phase. This video shows

the fluorescent signals of Spd-2-GFP (left panel) and

Sas-4-mCherry (right panel) recovering during M-phase

and then during the following S-phase; the centrosome

was bleached at t = 0 s in M-phase. The Spd-2-GFP

signal is detectable 30 s after photobleaching and

continues to increase during M-phase and the following

S-phase, when the centrosome divides into two. The

Sas-4-mCherry signal, however, only becomes detect-

able 330 s after photobleaching, once the embryo has

transitioned from M-phase into the following S-phase.

DOI: 10.7554/eLife.08483.009
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Figure 3. Two-colour-3D-SIM FRAP reveals that Sas-4-mCherry is recruited only to growing daughter centrioles,

while PCM proteins are recruited only around mother centrioles. (A) 3D-SIM images show how during S-phase two

adjacent Sas-4-GFP foci can be resolved at an individual centrosome (t = −20 s), and how the Sas-4-GFP

fluorescence signal recovers only as a single foci after photobleaching (t = 120 s to t = 280 s). Time in seconds before

and after photobleaching (t = 0 s) is shown in the top right of each panel. (B) Two-colour 3D-SIM images show how

Sas-4-GFP fluorescence recovers relative to Asl-mCherry fluorescence (which surrounds the mother centriole).

The Sas-4-GFP is shown in greyscale; insets (yellow dashed lines) display the overlay of Sas-4-GFP (green) and

Asl-mCherry (red). Note how after photobleaching the Sas-4-GFP fluorescence recovers outside of the Asl-mCherry

toroid. (C) Complementary images of a control centrosome adjacent to the one shown in (B) where the Sas-4-GFP

signal was not photobleached. The t = 0 s panel is a widefield image (see ‘Materials and methods’). (D, E) Schematic

(D) and box-plot (E) show how the average position of the post-bleached Sas-4-GFP signal is similar to the position

of the daughter, but not the mother, centriole’s prebleached Sas-4-GFP signal, relative to the Asl-mCherry signal.

Boxes in E extend from the 25th-75th percentiles, whiskers extend from min to max values, lines in boxes are the

median values, ‘+’ in boxes are the mean values; n = 25 centrosomes from 4 embryos. **** indicates where p <
0.0001; n.s. indicates where p = 0.09, and is therefore not significant. (F) 3D-SIM images show how Sas-4-mCherry

(red) recovers relative to recovering Spd-2-GFP (green). An overlay of Sas-4-mCherry and Spd-2-GFP fluorescence is

shown in the main panels; insets (yellow dashed lines) display the Sas-4-mCherry signal (greyscale). Note how after

photobleaching the Sas-4-mCherry recovers outside of the hollow created by the recovering Spd-2-GFP (t = 300 s).

Figure 3. continued on next page
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to cytoplasmic Sas-4) is required to efficiently recruit Asl molecules around maturing mother centrioles

(Dzhindzhev et al., 2010; Novak et al., 2014), and Asl has an important role in recruiting Spd-2 and

Cnn around mother centrioles (Conduit et al., 2010, 2014a).

Materials and methods

Transgenic Drosophila lines
Sas-4-mCherry and Asl-mCherry P-element-mediated transformation vectors were made by introducing

a full length Sas-4 or Asl cDNA into a mCherry C-terminal Gateway vector (Basto et al., 2008)

downstream of a 2 kb predicted promoter region. Transgenic lines were generated by the Fly

Facility in the Department of Genetics, Cambridge, United Kingdom. The other GFP and RFP

fusions have been described previously: pUbq-GFP-Cnn (Lucas and Raff, 2007), pUbq-Spd-2-GFP

(Dix and Raff, 2007), Sas-4-GFP (under control of endogenous promoter) (Novak et al., 2014) and

pUbq-RFP-Cnn (Conduit et al., 2010).

Fly Stocks for live cell microscopy
To examine the dynamics of GFP-Cnn and Sas-4-mCherry at centrosomes, we analysed embryos from

mothers expressing GFP-Cnn under the control of the pUbq promoter and Sas-4-mCherry under the

control of its endogenous promoter in a cnnf04547/cnnHK21 and sas-42214/sas-42214 mutant background.

To examine Spd-2-GFP and Sas-4-mCherry, we analysed embryos from mothers expressing Spd-2-

GFP under the control of the pUbq promoter and Sas-4-mCherry under the control of its endogenous

promoter in a sas-42214/sas-42214 mutant background. To examine Spd-2-GFP and RFP-Cnn, we

analysed embryos from mothers expressing Spd-2-GFP and RFP-Cnn both under the control of the

pUbq promoter in a cnnf04547/cnnf04547 mutant background. To examine Sas-4-GFP at super-resolution,

we analysed embryos from mothers expressing Sas-4-GFP under the control of its endogenous

promoter in a sas-42214/sas-42214 mutant background. To examine Sas-4-GFP and Asl-mCherry at

super-resolution, we analysed embryos from mothers expressing Sas-4-GFP and Asl-mCherry both

under the control of their respective endogenous promoters in a sas-42214/sas-42214 mutant

background. To examine Spd-2-GFP and Sas-4-mCherry at super-resolution, we analysed embryos

from mothers expressing Spd-2-GFP under the control of the pUbq promoter and Sas-4-mCherry

under the control of its endogenous promoter in a sas-42214/sas-42214 mutant background.

FRAP experiments at standard resolution
Imaging was carried out on a Perkin Elmer Spinning Disk confocal system running Volocity software

mounted on a Zeiss Axiovert microscope using a 60×/1.4 NA oil objective. Images shown are

maximum intensity projections of 5 z-slices taken 0.5 μm apart. Photobleaching of individual

centrosomes was carried out using a combination of a focussed 440 nm laser and a focussed 568 nm

laser. ImageJ was used to calculate the distance between the centre points of the recovering green

and red signals at 60 s post photobleaching. The images were first scaled up fivefold so that each

pixel was divided into 5 × 5 pixels—this allowed a more accurate analysis. The X; Y location of the

centre of mass of each signal was calculated by thresholding the image and running the ‘analyze

particles’ (centre of mass) macro on the most central Z plane of the centrosome. To adjust for any

residual shift in the green and red channels, we calculated the average distance and direction

between the ‘green’ and ‘red’ signals coming from subresolution TetraSpeck beads (Life

Technologies, United Kingdom) (total of 977 beads analysed from 12 images) and used this to

correct the centrosome data for any microscope-induced channel misalignment; the green and red

Figure 3. Continued

(G) Complementary images of a control centrosome adjacent to the one in (F) where the Sas-4-mCherry and Spd-2-

GFP signals were not photobleached. The t = 0 s image is a widefield image, as in (C).

DOI: 10.7554/eLife.08483.010

The following source data is available for figure 3:

Source data 1. Measuring the spatial offset between recovering Sas-4-GFP and Asl-mCherry at super resolution.

DOI: 10.7554/eLife.08483.011
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Figure 4. Potential S-CAP complexes are of low abundance in Drosophila syncytial embryo extracts. Panels show

western blots of anti-GFP immunoprecipitation experiments from WT embryos (lanes 1, 3, 5) or embryos expressing

Sas-4-GFP in the absence of endogenous Sas-4 (lanes 2, 3, 6). The membranes were probed for Sas-4 (A), Cnn (B),

γ-tubulin (C), Asl (D), pericentrin-like-protein (PLP) (E) or Actin (as a loading control) (F). Lanes 1 and 2 are taken from

the initial embryo extracts (‘input’); lanes 3 and 4 are ‘unbound’ samples taken from the extracts after the beads had

been removed; lanes 5 and 6 are ‘bound’ samples taken from the beads after incubation with extract. The * symbols

Figure 4. continued on next page
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signals from the beads were offset by a distance of 0.058 μm ± 0.005 μm. Once corrected, we

calculated the distance between the centres of the green and red signals from each centrosome, and

then calculated an average distance from all the centrosomes.

ImageJ was used to calculate the 60 s fluorescence recovery profiles of GFP-Cnn, Spd-2-GFP and Sas-

4-mCherry from the scaled (5 × 5) images described above. Using the previously calculated centre of mass

of each signal, concentric rings (spaced at 0.028 μm and spanning across 3.02 μm) were centred and the

average fluorescence around each ring was measured (radial profiling). After subtracting the average

cytosolic signal and normalising so the peak intensity of the image was equal to 1, we mirrored the profiles

to show a full symmetric centrosomal profile. For each profile, an average distribution from at least 10

centrosomes was calculated. The green and red profiles were plotted on the same graph after manually

taking into account the previously calculated average distance between the centre of each signal.

To produce the images that represent the average fluorescent signals at 60 s post bleaching (inset

into each graph described above), average projections of green and red images were initially generated

separately (after being aligned using the centre of mass coordinates) and then overlaid manually after

taking into account the previously calculated average distance between the centre of each signal.

To examine the rate of fluorescence recovery of GFP-Cnn, Spd-2-GFP and Sas-4-mCherry, we

measured the green and red fluorescence signals at each timepoint in the pixels where the fluorescent

signals overlapped. An ROI was drawn that included all Sas-4-mCherry pixels that had a value above

2 standard deviations from the mean image value, and the total value of the Sas-4-mCherry signal and

of the GFP-Cnn or Spd-2-GFP signal within these pixels was calculated. Typically, the ROI was 10 × 10

pixels (1.05 μm × 1.05 μm). The local cytoplasmic background fluorescence was then subtracted from

this value. An average value from at least 10 centrosomes was calculated and normalised by dividing it

by the average initial pre-bleach value. These normalised average values were then used for each data

point in the graph.

3D-structured illumination (sub-diffraction resolution) microscopy
Living embryos were imaged at 21˚C on a DeltaVision OMX V3 Blaze microscope (GE Healthcare,

United Kingdom) equipped with a 60×/1.42 oil UPlanSApo objective (Olympus), 488 nm and

593 nm diode lasers and Edge 5.5 sCMOS cameras (PCO). Spherical aberration was minimized by

matching the refractive indices (1.514) of the immersion oil to the sample. 3D-SIM image stacks

consisting of 6 z-planes were acquired with 5 phases, 3 angles per image plane and a distance of

0.125 μm between planes. The raw data was computationally reconstructed with SoftWorx 6.1

(GE Healthcare) using Wiener filter settings 0.006 and channel specific optical transfer functions. For

two colour 3D-SIM, images from the different colour channels were registered with alignment

parameters obtained from calibration measurements with 0.2 μm diameter TetraSpeck beads

(Life Technologies) using the OMX Editor software. Images shown are maximum intensity projections

of several z-slices. The quality of the reconstructed images was assessed using the SIM-Check ImageJ

plugin (Ball et al., 2015; http://www.micron.ox.ac.uk/microngroup/software/SIMCheck.php) to

ensure proper imaging conditions and to avoid reconstruction artefacts.

To perform 3D-SIM FRAP, we utilized the software development kit from GE Healthcare. This allowed

us to create a custom acquisition sequence that first acquired a single Z-stack in 3D-SIM (prebleached

image), then performed single or multi spot photobleaching (using the standard OMX galvo scanner TIRF/

photo-kinetics module), then performed time lapse imaging in widefield mode (including the

photobleached image), and then performed a second 3D-SIM Z-stack (5 min recovery image).

Immunoprecipitation experiments
0–4 hr embryos were collected from either w67 (wild-type) mothers or from mothers expressing Sas-4-

GFP under the control of its endogenous promoter in a sas-42214/sas-42214 mutant background. The

Sas-4-GFP construct appears to rescue the sas-42214 mutant phenotype when expressed from the

endogenous promoter, as the flies are fertile and coordinated (Novak et al., 2014). The embryos

Figure 4. Continued

in (A) highlight non-specific bands. Note that the signal intensities can only be directly compared between the

‘input’ and ‘unbound’ lanes (see ‘Materials and methods’).

DOI: 10.7554/eLife.08483.012
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were dechorionated using 60% bleach, washed thoroughly with 0.05% Tween-20 in distilled water,

flash frozen in liquid nitrogen and stored at −80˚C. Centrosome free extracts were prepared by

homogenising the frozen embryos in 2 ml per gram IP buffer (50 mM HEPES pH 7.6, 1 mM MgCl2,

1 mM EGTA, 1 mM DTT, 1× Protease inhibitor cocktail [Roche]) and centrifuging twice at 15,000 RCF.

The extract was maintained at 4˚C during preparation. Protein A Dynabeads (Invitrogen) were

covalently coupled to rabbit anti-GFP antibodies (this study) using the BS3 crosslinker (ThermoScien-

tific). The amount of antibody-bead conjugate required to pull out most Sas-4-GFP from the extract

was calculated empirically, and equal amounts were used for both Sas-4-GFP and wild-type extracts.

Before adding the beads to the lysates, a 10 μl ‘input’ sample was collected from the extracts and

mixed with 10 μl of 2× Laemmli sample buffer. The beads were added and the reaction was incubated

overnight at 4˚C by rotation. At the end of the incubation, a magnet was used to separate the beads

from the extract and a 10 μl ‘unbound’ sample was collected and mixed with 10 μl of 2× Laemmli

sample buffer. The ‘input’ and ‘unbound’ samples were of the same volume to ensure that the protein

levels in each sample could be directly compared. The beads were washed by re-suspension in PBT

three times at room temperature, then washed a further five times with PBT for 10 min by rotation at

4˚C. The beads were then boiled for 10 min in 50 μl Laemmli sample buffer to produce a ‘bound’

sample. 10 μl of each sample was run on a 3–8% Tris-Acetate NuPAGE gel (Life Technologies),

western blotted and probed for Sas-4, Cnn, Asl, D-PLP, and γ-tubulin using appropriate antibodies:

Primary antibodies: N-terminal rabbit anti-Sas-4 antibodies; N-terminal rabbit anti-Cnn antibodies;

C-terminal rabbit anti-Asl antibodies; C-terminal rabbit anti-D-PLP antibodies; mouse anti γ-tubulin
antibodies (Sigma); mouse anti-actin (Sigma). Secondary antibodies: HRP-conjugated anti-rabbit or

anti-mouse antibodies (Roche). SuperSignal West Femto Maximum Sensitivity Substrate (Thermo

Scientific) was used as a chemiluminescent HRP substrate.
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