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SUMMARY

Centrosomes are important cell organizers. They
consist of a pair of centrioles surrounded by pericen-
triolar material (PCM) that expands dramatically
duringmitosis—a process termed centrosomematu-
ration. How centrosomes mature remains myste-
rious. Here, we identify a domain in Drosophila Cnn
that appears to be phosphorylated by Polo/Plk1
specifically at centrosomes during mitosis. The
phosphorylation promotes the assembly of a Cnn
scaffold around the centrioles that is in constant
flux, with Cnn molecules recruited continuously
around the centrioles as the scaffold spreads slowly
outward. Mutations that block Cnn phosphorylation
strongly inhibit scaffold assembly and centrosome
maturation, whereas phosphomimicking mutations
allow Cnn to multimerize in vitro and to sponta-
neously form cytoplasmic scaffolds in vivo that
organize microtubules independently of centro-
somes. We conclude that Polo/Plk1 initiates the
phosphorylation-dependent assembly of a Cnn
scaffold around centrioles that is essential for effi-
cient centrosome maturation in flies.

INTRODUCTION

Centrosomes are the major microtubule (MT) organizing centers

in animal cells, and they influencemany cell processes, including

cell shape, cell polarity, and cell division (Bettencourt-Dias and

Glover, 2007; Doxsey et al., 2005a). Centrosome dysfunction

has been linked to many human disorders, including cancer

andmicrocephaly (Nigg andRaff, 2009; Zyss andGergely, 2009).

Centrosomes form when centrioles recruit a matrix of pericen-

triolar material (PCM) around themselves. In interphase, centri-

oles usually organize very little PCM, but the PCM increases

dramatically duringmitosis, a process termed centrosomematu-

ration (Mahen and Venkitaraman, 2012; Mennella et al., 2013;

Palazzo et al., 2000). Several hundred proteins are concentrated
Develo
in the PCM, including many MT-organizing proteins, cell-cycle

regulators, and cell-cycle checkpoint proteins (Alves-Cruzeiro

et al., 2013; Andersen et al., 2003; Müller et al., 2010). It seems

that the centrosome acts as an important regulatory center

that coordinates the activity of many cytoplasmic proteins and

signaling pathways (Doxsey et al., 2005b).

Several studies have pointed to the existence of a ‘‘scaffold’’

structure within the PCM (Dictenberg et al., 1998; Schnacken-

berg et al., 1998), but its molecular nature has remained elusive.

Recent reports using super-resolution microscopy have re-

vealed that a small number of centrosomal proteins are specif-

ically oriented around the centrioles during interphase, but any

organization within the expanded mitotic PCM was less

apparent (Fu and Glover, 2012; Lawo et al., 2012; Mennella

et al., 2012; Sonnen et al., 2012). Thus, although several proteins

have been implicated in mitotic PCM assembly (Mennella et al.,

2013), it remains unclear what role they play in organizing the

hundreds of proteins within the PCM to form a functional mitotic

centrosome.

The mitotic PCM is dynamic, because many of its proteins

are continuously exchanging between their centrosomal binding

sites and the cytosol. We recently showed that the conserved

Drosophila PCM protein Centrosomin (Cnn) exhibits an unusual

dynamic behavior, because its rate of exchange is much greater

at the center of the PCM than at the periphery (Conduit et al.,

2010). We speculated that Cnn binding sites might only be

located in the center of the PCM, close to the centrioles, and

that, once released from these binding sites, Cnn molecules

might spread outward, forming a molecular scaffold onto which

other PCM proteins might bind. This idea is attractive, because

centrioles are required for efficient PCM assembly (Basto

et al., 2006; Bobinnec et al., 1998; Kirkham et al., 2003), and

Cnn is required for the efficient recruitment of many centrosomal

proteins during mitosis (Lucas and Raff, 2007; Megraw et al.,

1999, 2001). Thus, the proposed mechanism would provide a

simple explanation for how centrioles might direct the assembly

of an underlying scaffold that enables centrosome maturation in

mitosis (Conduit and Raff, 2010). It remains unclear, however,

whether Cnn molecules actually form a scaffold that spreads

outward from the centrioles, how Cnn molecules assemble into

such a scaffold, and how their assembly is regulated so that it

occurs only around the centrioles.
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Here, we use photoconversion experiments to demonstrate

unambiguously that centrosomal Cnn molecules are in constant

flux, incorporating into the PCM close to the centrioles and

then moving slowly outward. We show that Cnn appears to be

specifically phosphorylated at centrosomes and that the phos-

phorylation allows Cnn to assemble into a scaffold structure

around the centrioles. We identify a domain within Cnn that is

phosphorylated by recombinant Polo/Plk1 in vitro and contains

ten potential phosphorylation sites; mutating various combina-

tions of these sites strongly inhibits the assembly of the Cnn

scaffold and centrosome maturation. Strikingly, mutating all

ten of the sites to phosphomimicking residues allows the domain

to efficiently assemble into stable multimers in vitro, and Cnn to

spontaneously form scaffolds in vivo that can organize MTs in

the absence of centrosomes. We conclude that the Polo/Plk1-

dependent phosphorylation of Cnn at centrosomes promotes

the assembly of a Cnn scaffold around the centrioles that

spreads slowly outward to enable the dramatic expansion of

the PCM during centrosome maturation in flies.

RESULTS

Cnn Molecules Incorporate Only into the Center of the
PCM and Then Move Slowly Outward
We used fluorescence recovery after photobleaching (FRAP) to

examine the spatiotemporal dynamics of GFP-Cnn incorpora-

tion into mitotic centrosomes in Drosophila syncytial embryos.

As we had observed previously (Conduit et al., 2010), prior to

photobleaching, GFP-Cnn was broadly distributed throughout

the PCM (Figure 1A; Movie S1A available online, t = �30 s),

whereas after photobleaching, GFP-Cnn fluorescence recov-

ered first in the center of the PCM and then gradually spread

outward over time (Figure 1A;Movie S1A; t = 30–210 s). Although

these observations suggest that new GFP-Cnn molecules bind

only around the centrioles and then gradually spread outward

in the PCM, it is possible that they bind throughout the PCM

but that the rate of exchange in the center of the PCM is faster

than that in the periphery, which could give the illusion of out-

ward spread through the PCM.

To distinguish between these possibilities, we expressed

Cnn tagged with the photo-switchable protein Dendra2 (Den-

dra2-Cnn, pseudocolored red) and photoconverted the fluores-

cence signal (pseudocolored green) specifically in the center of

the PCM (Figures 1B and 1C; Movie S2A). If the pattern of GFP-

Cnn fluorescence recovery observed in Figure 1A was simply

due to differences in exchange rates between the center and

periphery of the PCM, the photoconverted signal in the center

of the PCM (Figures 1B and 1C and Movie S2A; t = 0:00) would

simply dissipate as the photoconverted PCM molecules return

to the cytosol. We found, however, that the photoconverted

molecules spread slowly outward through the PCM and were

replaced in the center by newly incorporated unconverted mol-

ecules from the cytosol (Figures 1B and 1C and Movie S2A;

t = 0:00 to t = 7:00). The photoconverted molecules ultimately

detached from the periphery of the centrosome as PCM

‘‘flares’’ (arrowheads, Figures 1B and 1C and Movie S2A;

t = 8:30 to t = 10:30).

These flares have previously been shown to move along cen-

trosomal MTs (Lee et al., 2001; Megraw et al., 2002), so we
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wondered if the outward movement of Cnn was dependent on

MTs. Depolymerizing MTs with colchicine prior to photoconver-

sion strongly inhibited the outward spread of the photoconverted

Cnn molecules, particularly at the periphery of the PCM; as a

result, the photoconverted signal remained concentrated in the

center of the PCM and was no longer lost from the periphery

(Figures 1D and 1E; Movie S2B). Even when MTs were depoly-

merized, however, a dark ‘‘hollow’’ usually appeared at the

center of the photoconverted Dendra2-Cnn signal (arrow, Fig-

ure 1E; t = 19:30), suggesting that Cnn molecules can initially

spread outward a short distance in the absence of MTs; this

also appeared to be the case in FRAP experiment movies

(compare Movie S1A and Movie S1B). Depolymerizing MTs,

however, had little effect on Cnn incorporation into the center

of the PCM (compare Figure 1A to Figure 1F and Movie S1A to

Movie S1B), so the levels of Cnn at unbleached centrosomes

continued to increase steadily over time in embryos injected

with colchicine (Figure 1G). Together, these observations

demonstrate unambiguously that Cnn molecules continually

flux from the center to the periphery of the PCM.

To examine the architecture of the GFP-Cnn molecules

within the PCM in more detail we used live, three-dimensional-

structured illumination super-resolution microscopy (3D-SIM),

which has approximately twice the resolving power of standard

confocal microscopes. This revealed that GFP-Cnn formed an

extended, scaffold-like structure that appeared to emanate

from the centrioles, which were often apparent as a clear hollow

at the center of the structure (red arrows, Figure 1H). For reasons

described below, we hereafter refer to this structure as the Cnn

scaffold.

Cnn Appears to Be Phosphorylated Specifically at
Centrosomes during Mitosis
To understand how fast-moving cytosolic Cnn molecules might

be converted into the slow-moving Cnn molecules of the

Cnn scaffold, we tested whether Cnn becomes biochemically

modified as it incorporates into centrosomes. We compared

the electrophoretic mobility of Cnn on western blots of cytosolic

and centrosome-enriched fractions from fly embryos. All the

Cnn protein in the centrosomal fractions exhibited amobility shift

that could be attributed to protein phosphorylation, and the shift

was not detectable in the cytosolic fractions, suggesting that

phosphorylation only occurred at centrosomes (Figure 2A). In

support of this conclusion, some Cnn protein also showed a

mobility shift in mitotic larval brain extracts generated by treating

wild-type brains with colchicine (to arrest cells in mitosis

and therefore increase the proportion of Cnn molecules at

centrosomes); this shift was not detectable in mitotic extracts

generated from Sas-4 mutant brains (which lack centrosomes;

Figure 2B), even though these brains are known to be highly en-

riched for mitotic cells (Basto et al., 2006). Thus, Cnn appears to

be phosphorylated specifically at centrosomes during mitosis,

potentially explaining why it assembles into a scaffold only

around the centrioles.

Identification of Plk1 Phosphorylation Sites in a Cnn
Domain
To identify potential centrosome-specific phosphorylation

sites in Cnn, we immuno-isolated Cnn from either cytosolic
thors
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Figure 1. Cnn Initially Incorporates into the

Center of the PCM and Then Spreads

Outward

(A) Confocal images show the behavior of GFP-Cnn

before and after photobleaching (t = 0 s) at centro-

somes in embryos with intact MTs.

(B–E) Confocal images show the behavior of

Dendra2-Cnn (pseudo-colored red; B and D) and

photoconverted Dendra2-Cnn (pseudo-colored

green; B–E) at centrosomes in embryos. Dendra2-

Cnn was converted at the center of the PCM at

t = 0 and its distribution followed over time in

the presence (B and C) or absence (D and E) of

MTs. Red arrowheads (B and C; t = 1:30) indicate

flares of Dendra2-Cnn at the periphery of the PCM

that do not contain any photoconverted protein;

white arrowheads (B and C; t = 8:30 and 10:30)

indicate flares of Dendra2-Cnn at the periphery of

the PCM that now contain photoconverted mole-

cules that were originally generated in the middle

of the PCM. The centrosome in (B) and (C) dupli-

cated during the movie and the second centro-

some is indicated with an arrow as it moves away

(t = 8:30). Note how MT depolymerization (D and E)

largely blocks the outward movement of photo-

converted Dendra2-Cnn, although a dark hollow

develops in the center of the PCM (arrow, E; t =

19:30), indicating that some outward movement

has occurred.

(F) Confocal images from a FRAP experiment reveal

that MT depolymerization does not block the

incorporation of GFP-Cnn into the center of the

PCM (compare F to A).

(G) Graph displays the total levels of un-

bleached centrosomal GFP-Cnn during M-phase

in Drosophila embryos where MTs have been

depolymerized (red line). The dotted black line

indicates the maximal levels of centrosomal GFP-

Cnn during a normal mitosis (that normally only

lasts 3–4 min and during which time GFP-Cnn levels

remain constant; Conduit et al., 2010); MT depoly-

merization leads to M-phase arrest, allowing

measurements to be taken for a longer period, and

Cnn continues to steadily accumulate at centro-

somes over this time.

(H) A super-resolution 3D-SIM image of centro-

somes in a living cnn null mutant embryo injected

with mRNA encoding GFP-Cnn. Red arrows indi-

cate hollows that likely contain a centriole. Error

bars = SE.

See also Movies S1 and S2.
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or centrosome-enriched embryo fractions and performed a

tandem mass spectrometry (MS/MS) analysis after enrich-

ment for phosphopeptides. We identified several phospho-

peptides in the centrosomal fractions that were not found in

the cytosolic fractions (Table S1). Polo kinase is required

for the centrosomal recruitment of Cnn during mitosis in
Developmental Cell 28, 659–6
Drosophila (Dobbelaere et al., 2008;

Fu and Glover, 2012), and one of the

centrosome-specific Cnn phosphoryla-

tion sites (S567) closely conformed to a

Polo/Plk1 recognition motif (Santamaria

et al., 2011). Moreover, S567 was
located within a stretch of 85 amino acids (Lys516 to Tyr601)

that is highly conserved in Drosophila and contains nine addi-

tional conserved Ser/Thr residues, five of which at least

partially conform to the Plk1 recognition motif (Figure 2C).

Recombinant human Plk1 could phosphorylate maltose bind-

ing protein (MBP)-fusions that included this region in vitro,
69, March 31, 2014 ª2014 The Authors 661
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Figure 2. Polo/Plk1 Appears to Phosphorylate Cnn Specifically at Centrosomes

(A) Western blot of cytosolic (lane 1) and centrosomal (lanes 2–4) fractions of embryo extracts probed for Cnn (top panel) and Actin (bottom panel). Treatment of

the extracts with (+) or without (�) either alkaline phosphatase (phosphatase) or a cocktail of phosphatase inhibitors (phos. inhibitor) is indicated. Cnn displays a

mobility shift in the centrosome fraction (lane 2), which is abolished after phosphatase treatment (lane 3), but not if phosphatase inhibitors are included (lane 4).

(B) Western blot of interphase (�colchicine) or mitotic (+colchicine) extracts of larval brains from wild-type (WT, lanes 1 and 2) or Sas-4 mutants (lanes 3 and 4);

a-tubulin is shown as a loading control. Some of the Cnn displays a mobility shift in WT mitotic extracts (lane 2) that is not seen in Sas-4mutant extracts (lane 4),

indicating that the shift is dependent on centrosomes.

(C) Alignment of the Cnn PReM domain fromD.melanogaster (K516-Y601) and various otherDrosophila species. This domain contains a predicted leucine zipper

(dotted line box, Leu residues in blue) and ten conserved Ser/Thr residues (in red); the black box indicates S567, identified as a phosphorylation site by MS.

Residue numbers for D. melanogaster are indicated.

(D and E) Coomassie-stained gels (left) and autoradiograms (right) from an in vitro kinase assay with (+) or without (�) recombinant human Plk1, containing either

WT MBP-Cnn462-608 (WT) or mutant MBP-Cnn462-608 in which all ten conserved Ser/Thr residues have been mutated to Ala (10A). Only the WT protein is

phosphorylated by Plk1; note that phosphorylation leads to only a very small mobility shift in these fragments.

See also Table S1.
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but not when these ten conserved Ser/Thr residues were

mutated to Ala, demonstrating that Plk1 can directly

phosphorylate one or more of these sites (Figures 2D and

2E). For reasons explained below, we hereafter refer to this

region as the phosphoregulated-multimerization (PReM)

domain.

Phosphorylation of the PReM Domain Allows Cnn to
Assemble into a Scaffold around the Centrioles
To test whether phosphorylation of the Cnn PReM domain

is required for the formation of a centrosomal Cnn scaffold

we synthesized mRNAs in vitro encoding GFP fusions

with either wild-type (WT) Cnn (GFP-Cnn-WT) or a form of

Cnn in which all ten conserved Ser/Thr residues in the

PReM domain were mutated to Ala (GFP-Cnn-10A). We
662 Developmental Cell 28, 659–669, March 31, 2014 ª2014 The Au
injected these mRNAs into early cnn null mutant embryos

and assayed the behavior of the corresponding proteins

1–2 hr later with confocal imaging. GFP-Cnn-WT exhibited

a similar distribution to that of WT GFP-Cnn expressed in WT

transgenic embryos (compare Figure 3A to Figure 1A; data

not shown), and the GFP-Cnn-WT protein efficiently rescued

the cnn mutant embryo phenotype. In contrast, although

GFP-Cnn-10A localized to some extent to centrosomes and

partially rescued the cnn null mutant phenotype, its centrosome

localization was much weaker than that of GFP-Cnn-WT, and

it was concentrated in a much narrower region around the

centrioles (compare Figure 3A to Figure 3B and Movie S3A to

Movie S3B).

FRAP analysis revealed that GFP-Cnn-10A was continuously

recruited to centrosomes but, unlike GFP-Cnn-WT, it no longer
thors



Figure 3. Phosphorylation of the PReM

Domain Is Essential for Cnn Scaffold Forma-

tion and Efficient PCM Assembly

(A and B) Confocal images show centrosomes

in cnn null mutant embryos injected with

mRNA encoding either GFP-Cnn-WT (A) or GFP-

Cnn-10A (B).

(C and D) Confocal images from a FRAP experiment

show the dynamic behavior of GFP-Cnn-WT (C) and

GFP-Cnn-10A (D) at centrosomes in embryos

lacking endogenous Cnn. Time before and after

photobleaching at t = 0 is indicated.

(E and F) 3D-SIM images of centrosomes in

living cnn null mutant embryos injected with

mRNA encoding either GFP-Cnn-WT (E) or GFP-

Cnn-10A (F).

(G–J) Confocal images show the average

centrosomal fluorescence of WT GFP-Cnn (G)

and GFP-Cnn-10A (H) or DSpd-2-RFP in either

a WT GFP-Cnn (I) or a GFP-Cnn-10A (J) back-

ground after multiple standard confocal images

had been centered and averaged through the

Z-plane. Note that the centrosomal level of

DSpd-2-RFP and its extent of spread through

the PCM are reduced in the GFP-Cnn-10A back-

ground.

See also Movie S3.
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spread slowly away from the centrioles (Figures 3C and 3D). A

3D-SIM analysis in live embryos confirmed that GFP-Cnn-10A

was localized around centrioles but no longer formed an

extended scaffold that spread away from the centrioles

(Figures 3E and 3F). Importantly, the failure of GFP-Cnn-10A

to form an extended scaffold resulted in impaired PCM
Developmental Cell 28, 659–6
assembly, as the amount of another cen-

trosomal protein DSpd-2 (DSpd-2-RFP)

recruited to centrosomes, and its ability

to spread outward from the centrioles,

was strongly reduced in the GFP-Cnn-

10A background (Figures 3G–3J). We

conclude that phosphorylation of the

PReM domain is essential for efficient

Cnn scaffold formation and for efficient

centrosome maturation.

We used radial profiling to generate

normalized average fluorescence inten-

sity profiles (see Supplemental Experi-

mental Procedures) of centrosomes to

assess the ability of several mutant forms

of Cnn (in which different combinations of

the ten Ser/Thr sites were mutated

to Ala) to assemble into scaffolds

around the centrioles (Figure 4). Many

of the Ser/Thr residues appeared to in-

fluence scaffold assembly, although

some seemed more important than

others (for example, mutating S567;

S571;S573 gave a stronger phenotype

than mutating T529;S541;S597; Figure 4).

Moreover, there was a general trend indi-
cating that the more Ser/Thr residues present, the greater the

efficiency of scaffold formation (Figure 4). We conclude that

PReM domain phosphorylation is not required to recruit

Cnn to centrioles, but it is required for Cnn to assemble

efficiently into a PCM scaffold that spreads away from the

centrioles.
69, March 31, 2014 ª2014 The Authors 663



Figure 4. Multiple Phosphorylation Sites within the PReM Domain

Regulate Cnn Scaffold Assembly

Diagram displays the effect on the centrosomal localization of GFP-Cnn after

various Ser/Thr residues have been mutated to Ala (indicated by a gray fill).

Graphs show the normalized average fluorescence intensity profile of cen-

trosomes for each combination of mutations (see Supplemental Experimental

Procedures); numbers are the average FWHM ± SE of the profiles (giving a

quantitative measure of how far each mutant protein spreads out into the

PCM); a representative confocal image of each mutant is also shown. In
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The PReM Domain Contains a Leucine Zipper that Is
Essential for Dimerization In Vitro and Cnn Scaffold
Formation In Vivo
How might the PReM domain allow Cnn to assemble into

a scaffold structure? We noticed that the PReM domain

contains a leucine zipper (LZ; bold and boxed region in

Figure 2C; Heuer et al., 1995). In yeast two hybrid (Y2H)

assays, Cnn fragments containing the WT PReM domain

strongly self-interacted but not when the seven residues in

positions ‘‘a’’ and ‘‘d’’ of the LZ were mutated to Ala (LZA;

Figure 5A). Size exclusion chromatography multi-angle light-

scattering (SEC-MALS) analyses revealed that purified MBP-

Cnn fusions containing the WT PReM domain (MBP-Cnn-WT)

existed predominantly as dimers (Figure 5C; Figure S1A),

whereas the equivalent MBP-Cnn-LZA fusions existed

predominantly as monomers (Figure S1B), strongly suggesting

that the LZ is important for PReM domain dimerization in vitro.

Interestingly, however, Cnn fragments containing the PReM

domain with the Cnn-10A phosphomutations still self-inter-

acted in Y2H assays (Figure 5B) and still behaved

predominantly as dimers in vitro (Figure S1C). Thus, the LZ is

required for dimerization of the PReM domain in vitro, but this

dimerization appears to occur independently of phosphoryla-

tion. We found, however, that full-length GFP-tagged Cnn con-

taining the LZ mutations (GFP-Cnn-LZA) had a similar pheno-

type to the GFP-Cnn-10A mutant—both proteins were

recruited to centrioles, but neither protein formed scaffold

structures around the centrioles (compare Movie S3B to Movie

S3C). Thus, although phosphorylation is not required for LZ-

dependent dimerization, the LZ is essential for phosphoryla-

tion-driven Cnn scaffold formation in vivo.

Phosphomimetic Mutations within the PReM Domain
Allow Cnn to Multimerize In Vitro and to Form Cnn
Scaffolds Spontaneously In Vivo Independently of
Centrosomes
To test whether phosphorylation of the PReM domain enables

Cnn to form higher-order multimers in vitro, we examined the

behavior of MBP-Cnn fusions containing phosphomimetic muta-

tions in the PReMdomain (MBP-Cnn-10E/D). Remarkably, these

fusions formed higher-ordermultimers that had an averagemass

most consistent with that of a pentamer (Figure 5D; Figure S1D).

The averagemass of thesemultimers did not change over a wide

range of protein concentrations, suggesting that they had a rela-

tively stable structure (Figure 5D). The phosphomimetic multi-

mers reverted to a predominantly monomeric state if the LZ

was also mutated (MBP-Cnn-10E/D-LZA), demonstrating that

multimer formation is also dependent on the LZ (Figure S1E).

Thus, phosphomimetic mutations within the PReM domain allow

MBP-Cnn fusions to form LZ-dependent higher-order multimers

in vitro.

We tested whether phosphomimetic mutants of full-length

Cnn (GFP-Cnn-10E/D) would form Cnn scaffolds around the

centrioles in vivo more efficiently than GFP-Cnn-WT. Using the
general, the more Ser/Thr residues that are mutated, the less Cnn appears to

spread outward from the center of the PCM, although some sites appear to

have more influence than others on Cnn scaffold assembly.

See also Movie S3.
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Figure 5. Phosphorylation of the PReM

Domain Drives Cnn Scaffold Assembly by

Promoting Cnn Multimerization

(A and B) A yeast two-hybrid analysis with frag-

ments of Cnn (CnnQ403-H608) containing either a WT

PReM domain or a mutated PReM domain, in

which either the seven LZ residues (LZA; A) or the

ten potentially phosphorylated Ser/Thr residues

(10A; B) have been changed to Ala. Left panels

show yeast growth on media selecting for the

presence of the bait and prey plasmids; right

panels show growth on media selecting for an

interaction between the bait and prey proteins.

The WT and 10A mutants interact with them-

selves and with each other, whereas the LZA

mutant cannot interact with either itself or the WT

protein.

(C and D) SEC-MALS analysis of MBP-Cnn frag-

ments containing either a WT PReM domain (C) or

a mutated PReM domain in which the ten putative

phosphorylation sites have been changed to

phosphomimicking residues (10D/E; D). An equal

volume of protein at either 15 mM (black lines),

75 mM (blue lines), or 300 mM (red lines) concen-

tration was loaded onto the column. Expected

masses of a monomer (67.4 KDa, determined

by MS) and successive multimers (dimer, trimer,

etc.) are indicated with horizontal red dotted

lines across the graphs. WT MBP-Cnn has an

average mass similar to that of a dimer, whereas

MBP-Cnn-10D/E has an average mass most

similar to that of a pentamer. Note that the calcu-

lated mass of MBP-Cnn-10D/E remains constant

across a wide range of protein concentrations,

indicating that these multimeric complexes are

highly stable.

(E–J) Confocal images of cnn null mutant embryos

(E–G) or unfertilized eggs (H–J) injected with mRNA

encoding either GFP-Cnn WT (E and H), GFP-

Cnn10D/E (F and I), or GFP-Cnn10D/E+LZA (G and

J). Cytosolic foci of WT GFP-Cnn (E) can be seen in

the embryos, but these are largely flares that have

broken away from the periphery of the PCM

(Megraw et al., 2002). GFP-Cnn10D/E forms many

more cytosolic foci (F), making it difficult to distin-

guish the centrosomes; these foci are not formed if

the LZ is also mutated, which also blocks Cnn

scaffold formation around the centrioles (G). In

eggs, which lack centrosomes, GFP-Cnn-WT (H)

forms small foci in the cytoplasm, but GFP-

Cnn10D/E forms much larger foci (I); these foci are

dramatically decreased in size and intensity if the

LZ is also mutated (J).

(K) Quantification of foci formation in eggs by WT GFP-Cnn, GFP-Cnn10D/E, or GFP-Cnn10D/E+LZA.

(L) Confocal image of an unfertilized egg expressing the MT marker Jupiter-mCherry (red) and GFP-Cnn10D/E (green) shows that the larger GFP-Cnn10D/E foci

can organize MT asters independently of centrosomes.

See also Figure S1 and Movies S3, S4, and S5.
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assay described earlier, in which mRNA is injected into cnn

mutant embryos, we found the opposite: GFP-Cnn-10E/D was

recruited to centrosomes but less efficiently than GFP-Cnn-WT

(compare Figure 5E to Figure 5F). However, this appeared to be

because GFP-Cnn-10E/D also spontaneously formed many

prominent foci in the cytoplasm, independently of centrosomes

(Figure 5F), and these foci competed with centrosomes for the

GFP-Cnn-10E/D protein, as they gradually increased in bright-
Develo
ness over time (their presence often eventually making it difficult

to detect the real centrosomes; Figure 5F; Movie S4A). The

formation of these cytosolic foci was abolished if the LZ was

also mutated (GFP-Cnn-10E/D-LZA; Figure 5G), and this protein

localized to thecentrosomes in a similarmanner toGFP-Cnn-10A

and GFP-Cnn-LZA (Figure 5G; Movies S3B and S3C), strongly

suggesting that these cytoplasmic foci use the same LZ-depen-

dent assembly pathway as the centrosomal Cnn scaffolds.
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Figure 6. A Schematic Model of Cnn Scaffold

Assembly

In the cytosol, Cnn molecules (red circles) exist

predominantly as dimers (a), which form via the LZ

of the PReMdomain. Centriole binding sites for Cnn

(green haze) may be present in interphase centri-

oles, as some fly cells, such as cultured S2 cells,

can organize small amounts of Cnn and PCMduring

interphase (Mennella et al., 2012). Because

centriole-associated Polo is inactive, however,

Cnn is not phosphorylated and therefore cannot

assemble into a scaffold structure around the

interphase centrioles; the Cnn molecules released

from their centriole binding sites therefore immediately return to the cytosolic fraction (b). As cells enter mitosis, centriole-associated Polo is activated and

phosphorylates the Cnn PReM domain (c), promoting multimerization through the LZ (d). The Cnn multimers (here depicted as pentamers, based on our in vitro

SEC-MALS data) can further interact with one another through different regions of Cnn and thereby assemble into a macromolecular scaffold (e), which can only

move slowly away from the centrioles. The initial short-range movement of the scaffold away from the centrioles appears to beMT-independent, but the outward

movement at the periphery of the PCM is strongly dependent on MTs (f). Thus, the mitotic Cnn scaffold is in flux, as it continuously assembles around the

centrioles and disassembles at the periphery of the PCM, most likely because the Cnn molecules eventually become dephosphorylated at the periphery and so

lose their ability to multimerize. In this way, Cnn assembles from the inside out to form a scaffold around the centrioles. This expanded scaffold helps recruit other

PCM proteins, thus explaining why centrosomes increase in size so dramatically (mature) during mitosis.

See also Table S2.
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To confirm that GFP-Cnn-10E/D could form scaffold struc-

tures independently of centrosomes, we injected its mRNA into

unfertilized eggs, which lack centrosomes. Whereas GFP-Cnn-

WT usually formed small foci in eggs, GFP-Cnn-10E/D usually

formed much larger foci (compare Figures 5H, 5I, and 5K; Movie

S4B), and foci formation was strongly reduced if the LZ was also

mutated (Figures 5J and 5K). Most strikingly, the larger

GFP-Cnn-10E/D foci often organized dynamic MT asters in the

unfertilized eggs (Figure 5L; Movie S5), indicating that the

phosphomimetic Cnn scaffold can organize MTs even when it

assembles independently of centrosomes. We conclude that

phosphomimetic mutations of the PReM domain dramatically

increase the efficiency of Cnn scaffold formation in vivo. This

presumably explains why GFP-Cnn-10E/D can assemble into

scaffolds independently of centrosomes, because it no longer

requires phosphorylation at the centrosome to convert it into

an assembly-competent form.

DISCUSSION

As cells enter mitosis, centrosomes mature, and the amount of

PCM recruited around the centrioles dramatically increases

(Palazzo et al., 2000). Although many proteins have been impli-

cated in this process, we know little about how they organize a

functional mitotic centrosome. Previous studies have hinted at

the existence of a PCM scaffold, but its molecular nature has

remained elusive (Dictenberg et al., 1998; Schnackenberg

et al., 1998). Our data suggest that Cnn is phosphorylated spe-

cifically at centrosomes during mitosis, and this phosphorylation

allows Cnn to assemble into a scaffold around the centrioles

(Figure 6). Perturbing Cnn phosphorylation prevents efficient

scaffold assembly and efficient mitotic PCM recruitment,

demonstrating that the phosphorylated Cnn scaffold plays an

important part in centrosome maturation in flies.

We demonstrate unambiguously that the Cnn scaffold is in

constant flux: as the Cnn scaffold spreads slowly outward, it is

continuously replenished by new phosphorylated Cnn that

assembles around the centrioles; in this way, the Cnn scaffold

is built from the inside out. This inside-out assembly mechanism
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has important implications, because it potentially explains how

centrioles can influence the size of the PCM (Conduit et al.,

2010) and organize centrosomes of different sizes within the

same cell (Conduit and Raff, 2010)—as seems to occur in several

asymmetrically dividing stem/progenitor cells (Lesage et al.,

2010; Nigg and Stearns, 2011; Pelletier and Yamashita, 2012).

How does Cnn assemble into a scaffold structure? We show

that Cnn contains a PReM domain that contains a LZ and ten

Ser/Thr residues that are highly conserved inDrosophila species.

Mutating the LZ or the ten Ser/Thr residues to Ala strongly in-

hibits Cnn scaffold assembly in vivo, while mutating these ten

Ser/Thr residues to phosphomimicking residues promotes

spontaneous Cnn scaffold assembly in the cytosol, indepen-

dently of centrosomes. Moreover, whereas the WT PReM

domain predominantly forms dimers via the LZ in vitro, replacing

the ten Ser/Thr residues with phosphomimicking residues allows

the PReM domain to assemble into higher-order multimers in

an LZ-dependent manner. Our modeling suggests that the

arrangement of hydrophobic and hydrophilic residues within

the LZ could allow multiple LZs to associate laterally to form

such multimeric structures (unpublished data). We speculate,

therefore, that these stable multimers formed by the phosphomi-

micking mutant PReM domains in vitro may be the fundamental

building blocks of the phosphorylated Cnn scaffold in vivo

(Figure 6). How these multimers assemble into a larger macro-

molecular scaffold is unclear, but our Y2H analysis indicates

that multiple regions of Cnn can self-interact and so could poten-

tially participate in such a process (Table S2; Figure 6).

How is Cnn scaffold assembly regulated so that it only occurs

during mitosis? Polo/Plk1 is a key regulator of PCM assembly in

many systems (Barr et al., 2004; Blagden and Glover, 2003;

Haren et al., 2009) and it is activated in human cells during the

G2/M transition (Petronczki et al., 2008; Seki et al., 2008). In flies,

knocking down Polo in cultured fly cells abolishes Cnn phos-

phorylation (Dobbelaere et al., 2008) and strongly perturbs

Cnn’s centrosomal localization (Dobbelaere et al., 2008; Fu

and Glover, 2012). We show here that recombinant human

Plk1 can phosphorylate the PReMdomain of Cnn in vitro (Figures

2D and 2E) and that at least six of the putative phosphorylation
thors
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sites within the PReMdomain conform to a Polo/Plk1 recognition

motif. Moreover, abolishing these putative phosphorylation sites

prevents Cnn phosphorylation in vitro and Cnn scaffold forma-

tion in vivo, whereas mutating these sites to phosphomimicking

residues promotes multimerization in vitro and spontaneous

scaffold formation in vivo. Thus, it seems likely that Polo is acti-

vated during mitosis in fly cells and directly phosphorylates Cnn

to initiate Cnn scaffold assembly (Figures 6A and 6B), although

we cannot exclude the possibility that Polo activates an un-

known kinase that then phosphorylates Cnn.

How is Cnn scaffold assembly regulated so that it only occurs

around the centrioles? Our data strongly indicate that Cnn is

normally phosphorylated exclusively at centrosomes, and Polo

is highly concentrated at centrioles throughout the cell cycle (Fu

and Glover, 2012). While it remains formally possible that Cnn is

phosphorylated in the cytosol and phosphorylated Cnn is then

rapidly sequestered at centrosomes, we think this unlikely for

two reasons: (1) phosphomimetic Cnn is not rapidly transported

to centrosomes, but rather spontaneously assembles into scaf-

folds in the cytoplasm, and (2) in mitotic extracts of brain cells

that lack centrosomes, we cannot detect any phosphorylated

Cnn (Figure2B). It is interesting that thephosphorylationof at least

six of the tenconservedSer/Thr residueswithin thePReMdomain

appears to be required for efficient scaffold assembly (Figure 4).

The potential advantages of regulation by multisite phosphoryla-

tion in allowing switch-like transitions are well documented (Sala-

zar andHöfer, 2009). Thus, it seems likely that the requirement for

multisite phosphorylation helps ensure that Cnn normally only

efficiently forms a scaffold around the centrioles, where there is

a high concentration of both the kinase and its substrate.

Cnn is a large protein that contains several predicted coiled-

coil regions, supporting the idea that it can act as a molecular

scaffold onto which other PCM proteins can assemble. Proteins

related to Cnn have been identified in species ranging from

yeasts to humans, and many of these proteins have been impli-

cated in centrosome or MT organizing center assembly (Barr

et al., 2010; Choi et al., 2010; Lizarraga et al., 2010; Samejima

et al., 2010); they are also usually large proteins with several

predicted coiled-coil domains, and some family members have

been shown to interact directly with several other PCM compo-

nents, including the gTuRC (Choi et al., 2010; Samejima et al.,

2008; Terada et al., 2003), Aurora A (Terada et al., 2003), and

Pericentrin (Buchman et al., 2010; Wang et al., 2010). Although

we have been unable to identify an obvious PReM domain in

vertebrate Cnn family members, many of these proteins have

regions that might fulfill the minimal requirements for a PReM-

like domain—a potential coiled-coil interaction domain, and a

region containing multiple potential phosphorylation sites. We

therefore suspect that Cnn-like proteins will contribute to PCM

scaffold formation in many systems.

EXPERIMENTAL PROCEDURES

Transgenic Drosophila Lines

The Ubq-Cnn-Dendra2 and Ubq-RFP-DSpd-2 P-element-mediated transfor-

mation vectors were made by introducing full-length Cnn cDNA or DSpd-2

cDNA into the Ubq-Dendra2NT or Ubq-RFPNT Gateway vector, respectively

(Basto et al., 2008). Transgenic lines were generated by Bestgene (USA).

GFP-Cnn (Lucas and Raff, 2007) and Jupiter-mCherry (Callan et al., 2010)

have been described previously.
Develo
Dynamic Analysis of GFP and Dendra2 Fusion Proteins

Syncytial stage embryos were imaged on a Perkin Elmer ERS Spinning Disk

confocal system (ERS software) mounted on a Zeiss Axiovert microscope,

using a 633, 1.4NA oil-immersion objective. FRAP analysis was carried out

during S phase of cycle 11 or 12. We collected 0.5 mm thick confocal sections

through the center of a selected centrosome. We bleached GFP signals using

a focused 440 nm laser. We converted the Dendra2 signal using a focused

405 nm laser (targeted specifically at the central 4 pixels of the centrosome).

3D-Structured Illumination Microscopy

Embryos from cnnf04547/cnnHK21 hemizygous mutant mothers were injected

with mRNA encoding either WT GFP-Cnn or GFP-Cnn10A and imaged at

21�C on an OMX V3 microscope (Applied Precision) with a 603/1.35 NA oil-

immersion objective (Olympus). Images were processed using SoftWorx soft-

ware (Applied Precision). Images shown are maximum intensity projections of

several z-slices.

Production ofCentrosome andCytosolic Fractions andPhosphatase

Treatment

Whole centrosomes were isolated from embryonic extracts using a modified

version of a centrosome isolation protocol (Lehmann et al., 2006). Briefly, em-

bryo extract containing 50% sucrose was layered on top of a sucrose cushion

consisting of 55% and 70% sucrose. The tubes were spun at 27,000 rpm,

causing the centrosomes in the extract to move into the 70% sucrose layer.

‘‘Cytosolic’’ and ‘‘centrosome’’ fractions were collected from the top and

bottom of the tube, respectively. Phosphatase treatment was carried out using

alkaline phosphatase (Roche) for 4.5 hr at 37�C with or without phosphatase

inhibitor cocktails 2 and 3 (Sigma).

Analysis of Mitotic and Nonmitotic Brain Extracts

WT or Sas-4 mutant third instar larval brains were dissected and incubated in

Schneider’s Insect Medium (Sigma) supplemented with 10% fetal bovine

serum (Sigma) and Pen/Strep (Sigma), either with or without 1.25 mM colchi-

cine for 6 hr at 25�C. The brains were then boiled in 20 ml 13 sample buffer

containing phosphatase inhibitor cocktails 2 and 3 (Sigma) and the extracts

were run on a 3%–8% polyacrylamide gel.

Centrosome Immunoprecipitation and Mass Spectrometry

Briefly, centrosomal or cytosolic Cnn molecules were immunoprecipitated

using rabbit anti-Cnn antibodies coupled to protein A conjugated magnetic

Dynabeads (Life Technologies). Centrosomal and cytoplasmic fractions

(obtained as described above) were diluted and rotated with the antibody

beads at 4�C for 2 hr. Beads were washed, boiled in SB, and separated

from the sample using a magnet. The samples were separated on a polyacryl-

amide gel and the band containing Cnn was cut out and treated as described

in the Supplemental Experimental Procedures. Gel pieces were incubated

overnight with Promega sequencing grade modified trypsin. Formic acid

was added to stop the digestion. Supernatant containing the peptides

was transferred to a new tube and the gel pieces were incubated with extrac-

tion buffer to extract any remaining peptides. Samples were dehydrated

using a vacuum concentrator and enriched for phosphopeptides as described

in the Supplemental Experimental Procedures. Liquid chromatography-

MS/MS analysis was performed using a LTQ Orbitrap Mass Spectrometer

(Thermo Scientific) coupled to a UltiMate 3000 Nano LC system (Thermo

Scientific).

Image Analysis

We used Image J to calculate the average centrosomal fluorescence profile for

the different Cnn phosphorylation mutants. At least 16 centrosomes (28

centrosomes on average) from several embryos were used to calculate the

average distribution for each protein type. To calculate the profile for an indi-

vidual centrosome, we first calculated the center of mass of the centrosome by

thresholding the image and running the ‘‘analyze particles’’ (center of mass)

macro on the most central Z plane of the centrosome. We then centered

concentric rings (spaced at 0.028 mm and spanning across 3.02 mm) on this

center and measured the average fluorescence around each ring (radial

profiling). After subtracting the average cytosolic signal, an average profile

for the given protein type was calculated. This profile was normalized so the
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peak intensity was equal to 1, and the profile was mirrored to show a full sym-

metric centrosomal profile.

To calculate the FULL WIDTH HALF MAX (FWHM) for each form of GFP-

Cnn, a normalized mirrored profile was calculated for each individual centro-

some. Each profile was analyzed with the ImageJ Gaussian curve-fitting

macro to produce a ‘‘d’’ value. This ‘‘d’’ value was multiplied by 2.35482005

to produce a FWHM value for the profile. The average FWHM value and its

SE for each form of GFP-Cnn was then calculated to produce an overall

FWHM ± SE value.

For producing average fluorescence images of GFP-Cnn-WT and RFP-

DSpd-2 (from 29 centrosomes) and GFP-Cnn-10A and RFP-DSpd-2 (from

25 centrosomes), we first aligned the centrosomes by producing a stack of

images where the center of mass of each centrosome was positioned in the

center of the cropped image. We then generated an average Z-projected

image.

Yeast Two-Hybrid Analysis

All yeast two-hybrid experiments were carried out using pPC86-AN and

pPC97-AN vectors; the Y8800 and Y8930 yeast strains were kindly supplied

by Mike Boxem (Boxem et al., 2008). For assays testing the effect of mutating

the LZ or the effect of mutating phosphorylation sites with the PReM domain

on the self-interaction of Cnn fragments, both baits and prey fragments

encoded the region of Cnn from Q403 to H608. For assays testing Cnn-Cnn

interactions in general, the bait fragments encoded the N-terminal, middle,

and C-terminal thirds of Cnn, or the N-terminal two-thirds, C-terminal two-

thirds of Cnn, and the full-length Cnn protein; the preys encoded smaller

�200 amino acid fragments and larger combinations of these fragments

(Table S2).

GFP-Cnn Foci Quantification

Images from eggs expressing WT GFP-Cnn (15 eggs), GFP-Cnn10D/E

(15 eggs), or GFP-Cnn10D/E+LZA (12 eggs) were scored blind for quantifica-

tion. The images from each genotype were compiled, numbered randomly,

and then scored by three individuals (who were not involved in obtaining or

numbering the images) as containing no foci, small foci, medium foci, or large

foci. The consensus phenotype (the phenotype scored by at least two people)

was taken as the true phenotype for each egg.

Statistical Analysis

Error bars above and below the mean value in Figure 1G and FWHM error

values in Figure 4 represent the SEM as calculated by dividing the SD by the

square root of n.

More extensive details of our experimental procedures, including details of

antibodies used, can be found in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

one figure, two tables, and fivemovies and can be found with this article online

at http://dx.doi.org/10.1016/j.devcel.2014.02.013.
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Petronczki, M., Lénárt, P., and Peters, J.-M. (2008). Polo on the rise-from

mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646–659.
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