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SUMMARY

Centrosome amplification is a common feature of
many cancer cells, and it has been previously pro-
posed that centrosome amplification can drive ge-
netic instability and so tumorigenesis. To test this hy-
pothesis, we generated Drosophila lines that have
extra centrosomes in �60% of their somatic cells.
Many cells with extra centrosomes initially form mul-
tipolar spindles, but these spindles ultimately be-
come bipolar. This requires a delay in mitosis that
is mediated by the spindle assembly checkpoint
(SAC). As a result of this delay, there is no dramatic
increase in genetic instability in flies with extra cen-
trosomes, and these flies maintain a stable diploid
genome over many generations. The asymmetric di-
vision of the larval neural stem cells, however, is
compromised in the presence of extra centrosomes,
and larval brain cells with extra centrosomes can
generate metastatic tumors when transplanted into
the abdomens of wild-type hosts. Thus, centrosome
amplification can initiate tumorigenesis in flies.

INTRODUCTION

Centrosomes are the main microtubule organizing centers in

animal cells, and they comprise a pair of centrioles surrounded

by an amorphous pericentriolar material (PCM) (Bornens, 2002;

Kellogg et al., 1994). Centrosomes play an important part in or-

ganizing many cell processes, particularly during mitosis where

they organize the poles of the mitotic spindle. The idea that cen-

trosome amplification can contribute to tumorigenesis was first

proposed by Theodor Boveri almost one hundred years ago (Bo-

veri, 2008; Wunderlich, 2002). Boveri was aware that malignant

cells often had an abnormal complement of chromosomes,

and he had shown that the presence of extra centrosomes in

sea urchin embryos invariably led to chromosome missegrega-

tion, as the chromosomes were randomly distributed among
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the spindle poles formed by the multiple centrosomes. This ele-

gant hypothesis, however, was largely ignored as the discovery

of oncogenes led to the idea that tumorigenesis is a multistep

process involving the accumulation of several mutations or epi-

genetic changes that ultimately give rise to a cancer cell. Never-

theless, it remains a fact that genetic instability is a common fea-

ture of many different types of cancer.

Centrosome amplification is a common feature of many can-

cer cells (D’Assoro et al., 2002a, 2002b; Nigg, 2006; Pihan

et al., 1998, 2001). Moreover, levels of centrosome amplification

are often correlated with levels of genetic instability (Brinkley,

2001; Ghadimi et al., 2000; Lingle et al., 2002). Thus, it is now

widely assumed that centrosome amplification inevitably leads

to genetic instability, and that this can be a significant factor in

the generation of fully transformed cancer cells. In support of

this possibility, it has recently been shown that inducing genetic

instability in mice can increase the rates of tumor formation in

some, but not all, tissues (Weaver et al., 2007).

Centrosome amplification, however, does not necessarily lead

to spindle multipolarity (Quintyne et al., 2005; Ring et al., 1982). In

at least some cell types, extra centrosomes can ‘‘cluster’’ to-

gether during mitosis, and the cells often ultimately divide in a bi-

polar fashion. Indeed, it is thought that many cancer cells in cul-

ture have evolved mechanisms to cluster their centrosomes

during mitosis so they avoid generating high (and potentially

lethal) levels of aneuploidy during every round of cell division

(Brinkley, 2001). Thus, the consequences of amplifying centro-

somes within the context of a normal developing organism are

far from clear.

In flies and humans, the protein kinase SAK/PLK4 plays a crit-

ical part in initiating centriole duplication, and the overexpression

of this protein can drive centriole overduplication in cells (Betten-

court-Dias et al., 2005; Habedanck et al., 2005; Kleylein-Sohn

et al., 2007). In this study, we have used stable Drosophila trans-

genic lines overexpressing SAK to drive centrosome amplifica-

tion in �60% of somatic cells. This has allowed us to assess

the long-term consequences for an organism of having cells

with too many centrosomes. Surprisingly, we find that cells

with extra centrosomes invariably divide in a bipolar fashion

in vivo, and the presence of extra centrosomes does not
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generate large-scale genetic instability. The asymmetric division

of the neural stem cells (neuroblasts), however, is perturbed, and

�10% of these cells ultimately divide symmetrically. Most impor-

tantly, we show that the transplantation of brain cells with too

many centrosomes can induce the formation of metastatic tu-

mors in normal hosts.

RESULTS

Flies Overexpressing GFP-SAK Have Too Many
Centrosomes in �60% of Their Somatic Cells but Are
Viable and Fertile
It has previously been shown that the overexpression of the cen-

triole replication protein SAK/PLK4 leads to the formation of ex-

tra centrosomes in cells (Bettencourt-Dias et al., 2005; Habe-

danck et al., 2005; Kleylein-Sohn et al., 2007; Peel et al., 2007).

To analyze the consequences of centrosome amplification within

the context of a developing multicellular organism, we analyzed

stable transformed Drosophila lines that expressed a GFP-SAK

fusion protein under the control of the Ubiquitin promoter. This

promoter is expressed at moderately high levels in all cells

(Lee et al., 1988), and it leads to a dramatic overexpression of

centriole duplication proteins, as these proteins are normally ex-

pressed at very low levels in cells (Peel et al., 2007). We gener-

ated several independent transformed lines, all of which showed

similar degrees of centrosome amplification; we analyzed two of

these lines in detail. Both lines behaved in an essentially indistin-

guishable manner in all the experiments reported here, so we

simply refer to them as SAKOE lines, unless otherwise stated.

Quantification of centrosome number in SAKOE third-instar

larval brain cells revealed that �60% of these cells contained

more than two centrosomes (Figures 1A–1C), and we obtained

similar results in larval imaginal disc cells (data not shown).

Note that in this and all subsequent experiments dots were

only counted as centrosomes if they were stained by both cen-

triolar and PCM or microtubule (MT) markers. Usually, 3 to 6

centrosomes were present in the cells with extra centrosomes,

but cells with higher numbers were occasionally observed. To

confirm that these structures were centrosomes, we performed

an electron microscopy (EM) analysis of fixed whole-mount

brains. In wild-type (WT) brains, two centrioles were identified

at each spindle pole (n = 4) (Figure 1D). In contrast, half of the

spindle poles we examined in SAKOE cells contained multiple

centrioles (n = 9/18) (Figure 1E). Thus, the extra centrosomes

we observe in the SAKOE cells contain morphologically recog-

nizable centrioles.

We have previously shown that DSas-4 mutant flies (that lack

centrioles and centrosomes) are morphologically normal and are

only slightly delayed in development compared to WT flies

(Basto et al., 2006). Surprisingly, we found that SAKOE flies

were also morphologically normal (Figure S1 available online),

but they exhibited a much longer delay in development com-

pared to WT and DSas-4 mutants (Figure 1F). To test if this de-

velopmental delay was caused by the presence of extra centro-

somes, we overexpressed GFP-SAK in a DSas-4 mutant

background. These flies contained no detectable centrioles

(data not shown) and, like DSas-4 mutants alone, they were

only slightly delayed in development (Figure 1F). We conclude
that it is the presence of extra centrosomes in SAKOE flies that

delays their development.

Despite the delay in development, adult SAKOE flies were

viable and fertile, although a significant fraction of eggs laid by

SAKOE females (�60%) died early in development due to an ac-

cumulation of mitotic errors (Peel et al., 2007). Nevertheless,

transgenic fly lines containing extra centrosomes in �60% of

their somatic cells can be maintained in the laboratory as viable

and fertile stocks for many generations (at present we have

maintained these stocks for nearly 2 years).

Mitosis in Cells with Extra Centrosomes
These findings indicate that the presence of extra centrosomes

in the majority of somatic cells in an organism is compatible

with normal development and long-term survival. This suggests

that extra centrosomes do not dramatically interfere with cell

division and cell-cycle progression. To better understand how

cells divide in the presence of extra centrosomes we examined

fixed SAKOE third-instar larval brain cells.

It has previously been shown that centrosomes behave asym-

metrically in WT neuroblasts, with one centrosome associated

with more PCM and nucleating more MTs than the other

throughout interphase and during the early stages of mitosis (Re-

bollo et al., 2007; Rusan and Peifer, 2007). This asymmetry was

noticeable during early mitosis in WT neuroblasts (Figures 1A

and 2A) but was often not apparent in SAKOE neuroblasts with

extra centrosomes (Figures 1B and 2B). In these early mitotic

cells, all centrosomes were associated with PCM and MTs and

the centrosomes were often of different sizes, but it was usually

not possible to identify a single ‘‘dominant’’ centrosome, either in

terms of PCM recruitment or MT nucleation (Figure 2B). Thus,

centrosome asymmetry appears to be disrupted in neuroblasts

with extra centrosomes.

In WT brains, 98% of cells (n = 250 cells) formed a bipolar spin-

dle by metaphase (Figure 2C, see also Figure S2). Surprisingly,

93% of cells with extra centrosomes, (n = 500 cells) had also

formed a bipolar spindle by metaphase (Figures 2D and S2).

Usually, several of the centrosomes were clustered at the poles

of the spindle, but we also often observed centrosomes that

were not associated with either pole (Figure 2D, see also

Figure S3). In metaphase and anaphase cells, the non-pole-as-

sociated centrosomes usually contained less PCM than the cen-

trosomes located at the poles, and they were usually not associ-

ated with robust asters of MTs (arrows, Figures 2D–2F, see also

arrows in Figure 3E), suggesting that they were partially inacti-

vated. Importantly, we made similar observations on the cluster-

ing and partial inactivation of extra centrosomes in living SAKOE

brain cells (Figure S3 and Movies S1–S4).

Surprisingly, the frequency of multipolar and abnormal meta-

phase spindles was only slightly higher in SAKOE cells (2%

and 5%, respectively, n = 500 cells) than in WT cells (0% and

2%, respectively, n = 250 cells) (Figure S2). And, by the time cells

entered anaphase, the spindles were always bipolar in both WT

and SAKOE brains (n = 200 cells and n = 400 cells, respectively),

while the frequency of aneuploidy was only slightly higher in SA-

KOE brains (1.75%, n = 345 cells) compared to WT (0.7%, n =

150 cells) (Table 1). The mitotic index, however, was significantly

higher in SAKOE brains (2.6% ± 0.5%, n = 7797 cells from 4
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brains) compared to WT (1.9% ± 0.3%, n = 12,000 cells from 4

brains) (p < 0.05), indicating that mitosis takes longer than normal

in cells that have extra centrosomes (Table 1). Thus, Drosophila

somatic cells with extra centrosomes are delayed in mitosis but

ultimately divide in a bipolar fashion.

The Spindle Assembly Checkpoint Is Essential in Flies
with Extra Centrosomes
These observations suggested that the spindle assembly check-

point (SAC) might delay mitosis in cells with extra centrosomes.

To test this hypothesis, we crossed the SAKOE lines to mad2

mutants. Although Mad2 is an essential component of the

SAC, mad2 mutant flies are viable and fertile, indicating that

the SAC is dispensable during unperturbed cell divisions in Dro-

sophila (Buffin et al., 2007). The mad2,SAKOE flies were synthet-

ically lethal and died as pupae, demonstrating that the SAC is

absolutely essential for the viability of flies with extra centro-

Figure 1. Overexpression of SAK Induces

Centrosome Amplification and Delays

Development

(A and B) Immunostaining of G2 wild-type (WT) (A)

and SAKOE (B) neuroblasts with the centriole

marker D-PLP (left, green in merged panel), the

PCM marker g-tubulin (middle, red in merged

panel), and DNA (blue in merged panel). In the

WT neuroblast the two centrosomes are asym-

metric (see text for details) and only one contains

high levels of g-tubulin. In the SAKOE neuroblast

eight centrosomes are present and these contain

varying amounts of g-tubulin.

(C) Quantification of centrosome number in WT

(white bars) and SAKOE (red bars) neuroblasts.

Note that we only scored D-PLP dots as centro-

somes if they also contained some PCM.

(D and E) EM micrographs of selected thin serial

sections of WT (D) and SAKOE (E) neuroblast spin-

dle poles. In the WT cell only two centrioles were

detected at the spindle pole (red and yellow ar-

rows). In this SAKOE cell three centrioles were de-

tected at the spindle pole (red, yellow, and orange

arrows).

(F) A graph showing the percentage of WT (white

bars), SAKOE (red bars), DSas-4 (light gray), and

DSas-4,SAKOE (dark gray) pupae that formed be-

tween the 5th and 10th day of development. More

than 95% of SAKOE pupae eclosed as adults,

which is similar to WT controls. Scale bar (A and

B) = 10 mm; (D and E) = 0.5 mm.

somes. The mad2,SAKOE larvae devel-

oped slightly faster than WT flies, at

a rate comparable to mad2 mutants,

and much faster than the SAKOE flies,

demonstrating that it is the maintenance

of an active SAC that causes the develop-

mental delay in SAKOE flies (Figure 3F).

As expected, the mitotic index in

mad2,SAKOE brains (1.7% ± 0.5%;

n > 2000 cells) was lower than in WT or

SAKOE brains (Table 1), confirming that

the presence of extra centrosomes cannot delay mitosis in the

absence of Mad2. In addition, we noticed a dramatic increase in

the number of multipolar and defective spindles in mad2,SAKOE

brain cells (Figures 3A–3C and S2), and the levels of polyploidy,

aneuploidy, and lagging chromosomes during anaphase were

also dramatically increased (Table 1). Thus, the SAC is essential

in cells with extra centrosomes to prevent spindle multipolarity

and the subsequent generation of large-scale genetic instability,

presumably because it allows extra time for bipolar spindle

formation.

The Kinesin 14 Ncd Is Required for Efficient
Centrosome Clustering
It has previously been shown that the minus-end-directed motor

cytoplasmic Dynein plays an essential role in the clustering of su-

pernumerary centrosomes (Quintyne et al., 2005). We tested

whether another minus-end-directed motor, Ncd (HSET in
1034 Cell 133, 1032–1042, June 13, 2008 ª2008 Elsevier Inc.



vertebrates), could also be important for this process. Ncd is re-

quired for the efficient focusing of the spindle poles in fly cells

(Goshima et al., 2005), but its activity is not absolutely essential

in somatic cells and ncd mutants are viable (Endow and Komma,

1998; Skold et al., 2005). We expressed GFP-SAK in an ncd

mutant background and found that the developmental rate of

ncd,SAKOE flies was even slower than that of the SAKOE flies

(Figure 3F), although the flies that hatched were all morphologi-

cally normal (data not shown). The ncd,SAKOE brains showed

a dramatic increase in the rate of spindle multipolarity during pro-

phase and metaphase (Figures 3D and S2), but we still never ob-

served any multipolar spindles during anaphase (Figure 3E,

n = 230 cells). The levels of aneuploidy, polyploidy, and lagging

chromosomes during anaphase were all slightly elevated in

ncd,SAKOE brains compared to SAKOE or ncd mutant brains

alone, while the mitotic index was much higher (Table 1). We

conclude that cells with too many centrosomes have great diffi-

culty in organizing a bipolar spindle in the absence of Ncd; nev-

ertheless, these cells can still delay the exit from mitosis until

bipolarity is eventually achieved.

Figure 2. Mitosis in Cells with Extra Centro-

somes

(A–F) Immunostaining of WT (A, C, and E) and SA-

KOE (B, D, and F) mitotic neuroblasts with D-PLP

(left, green in merged panels), a-tubulin (2nd

panel, red in 4th panel), Cnn (3rd panel, red in 5th

panel), and DNA (blue in merged panels). In the

WT prophase cell (A), the arrow highlights the

dominant centrosome that contains more PCM

and nucleates more microtubules (MTs). In the SA-

KOE prophase cell (B), seven centrosomes are

present, but there is no single dominant centro-

some. In the WT metaphase (C) and anaphase

(E) cells, a centrosome is located at each pole of

the spindle. In the SAKOE metaphase (D) and ana-

phase (F) cells, several centrosomes are clustered

at the poles of each spindle (arrowheads) while

others are not (arrows). The centrosomes that

are not clustered at the spindle poles appear to

contain less Cnn and are not associated with ro-

bust astral MTs (compare this to the situation in

the prophase cell shown in B). Scale bar = 10 mm.

Extra Centrosomes Lead to
Abnormalities in the Asymmetric
Divisions of Larval Neuroblasts
While centrosomes are not essential for

somatic cell division (Basto et al., 2006;

Hinchcliffe et al., 2001; Khodjakov et al.,

2000; Uetake et al., 2007), the astral

MTs generated by centrosomes seem to

have a particularly important role during

asymmetric divisions, when the spindles

must align correctly with cortical polarity

cues (Yu et al., 2006 and Siegrist and

Doe, 2005). In DSas-4 mutant neuro-

blasts (that completely lack centro-

somes), the anastral spindles have great

difficulty in aligning properly with cortical

cues and �16% of neuroblasts ultimately divide symmetrically

(Basto et al., 2006).

To test whether cells with extra centrosomes have defects in

asymmetric cell division we initially examined the localization

of the apical marker aPKC and the basal marker Miranda

(Mira). In the majority of WT and SAKOE neuroblasts (91%,

n = 80 and 79%, n = 150, respectively) the aPKC and Mira cres-

cents were correctly localized on opposite sides of the neuro-

blasts (Figures S4A–S4C and S4E). We noticed, however, that

in some SAKOE neuroblasts the cortical proteins were either

misaligned or delocalized from the cortex (Figures S4D and

S4E), while the metaphase plate was also sometimes not

oriented correctly with respect to the polarity axis (Figure S4C).

To characterize this alignment defect in more detail, we

stained SAKOE third-instar larval neuroblasts with anti-a-tubulin

antibodies and determined spindle orientation relative to the cor-

tical aPKC crescent. In 95% (n = 50) of WT neuroblasts the spin-

dle was aligned within 30� of the center of the aPKC apical cres-

cent (Figures 4A and 4E), but this was true in only 60% (n = 98) of

SAKOE neuroblasts that contained extra centrosomes (Figures
Cell 133, 1032–1042, June 13, 2008 ª2008 Elsevier Inc. 1035



4B and 4E). Moreover, a significant fraction of spindles in SAKOE

neuroblasts with extra centrosomes (15%, n = 98) were orga-

nized at right angles to the aPKC crescent (Figures 4C and 4E),

Figure 3. Mad2 and Ncd Are Required for

the Suppression of Spindle Multipolarity

(A–C) Immunostaining of mad2,SAKOE mitotic

neuroblasts with D-PLP (left, green in merged

panels), a-tubulin (2nd panel, red in 5th panel),

Cnn (3rd panel, red in 6th panel), and DNA (blue

in merged panels). For comparison with WT con-

trols see Figures 2A and 2E. Tripolar anaphases

(A), anaphases with lagging chromatids (arrow in

B), and polyploid cells (C) are often seen in mad2,-

SAKOE brains but very rarely in SAKOE neuro-

blasts (see Table 1). Note that mad2,SAKOE neu-

roblasts can also contain much larger numbers of

extra centrosomes than is ever seen in SAKOE

cells (�30 in the cell shown here).

(D and E) Immunostaining of ncd,SAKOE mitotic

neuroblasts with D-PLP (left panel, green in

merged panels), a-tubulin (2nd panel, red in 4th

panel), Cnn (3rd panel, red in 5th panel), and

DNA (blue in merged panels). For comparison

with WT control neuroblasts see Figures 2C and

2E. In ncd,SAKOE neuroblasts multipolar meta-

phases can be detected (D) but almost all ana-

phases are bipolar (E). Scale bar = 10 mm.

(F) A graph showing the percentage of WT (white

bars), SAKOE (red bars), mad2 (light blue), mad2,-

SAKOE (dark blue), ncd (bright green), and

ncd,SAKOE (dark green) pupae that formed be-

tween the 5th and 10th days of development.

Note that the WT and SAKOE data shown here

are the same as that shown in Figure 1A, as

these experiments were performed at the same

time.

which was not seen in WT cells. Impor-

tantly, these spindle alignment defects

were not detected in SAKOE cells that

contained only two centrosomes (Figures

S5A and S5B). Taken together these data

demonstrate that neuroblasts with extra

centrosomes have relatively subtle prob-

lems in establishing and/or maintaining

the localization of cortical cues, and

more significant problems in aligning their spindles correctly

with these cues.

To investigate why neuroblasts with extra centrosomes have

trouble properly aligning their spindles, we examined the distri-

bution of Mud, the Drosophila homolog of NuMA. This protein

has been implicated in spindle positioning, and it is normally con-

centrated at centrosomes, with the apical centrosome usually

containing more Mud than the basal centrosome (Bowman

et al., 2006; Izumi et al., 2006; Siller et al., 2006) (Figure S6A).

In neuroblasts with extra centrosomes, however, the asymmetric

centrosome staining of Mud was usually not evident, and, in

many SAKOE neuroblasts (20%, n = 90), very little Mud could

be detected at any of the centrosomes (Figures S6B and S6C).

Thus, the centrosomal localization of Mud is perturbed in cells

with extra centrosomes, potentially explaining, at least in part,

why spindle orientation is perturbed.

Table 1. Quantification of Mitotic Defects

Mitotic

Index

%

Polyploidy

%

Aneuploidy

%Anaphase

with Lagging

Chromatids

WT 1.9 ± 0.3 ND 0.7% ND

SAKOE 2.6 ± 0.5 ND 1.75% ND

mad2 1.6 ± 0.5 ND 0.6% 0.5%

mad2,SAKOE 1.7 ± 0.5 12% 10.0% 12.0%

ncd 2.2 ± 0.2 ND 1.0% 1.0%

ncd,SAKOE 5.2 ± 0.3 3.0% 4.5% 4.0%

ND: not detected.
1036 Cell 133, 1032–1042, June 13, 2008 ª2008 Elsevier Inc.



In Drosophila neuroblasts redundant mechanisms cooperate

to ensure that the process of asymmetric division is extremely ro-

bust, and although many mutants have initial defects in aligning

their spindles with cortical cues, most mutant cells ultimately di-

vide asymmetrically (Bowman et al., 2006 ; Izumi et al., 2006;

Siegrist and Doe, 2005; Siller et al., 2006). To test whether SA-

KOE neuroblasts ultimately divided asymmetrically we followed

the behavior of the MT-associated protein Jupiter::GFP (Kar-

pova et al., 2006) in living neuroblasts. As described above, mul-

tipolar spindles were often seen at early stages of mitosis (Fig-

ures 5B and 5C), but these usually resolved themselves into

a bipolar spindle, and the cells divided asymmetrically (�91%,

n = 46, Figure 5B). In�9% of cases, however, the cells with extra

centrosomes divided symmetrically (Figure 5C), something we

never observed in WT brains (Figure 5A, n = 30) (Basto et al.,

2006).

Figure 4. Asymmetric Cell Division Is Per-

turbed in Neuroblasts with Extra Centro-

somes

(A–D) Immunostaining of WT (A) and SAKOE (B–D)

neuroblasts with D-PLP and aPKC (left panel,

green in merged panels), a-tubulin (2nd panel,

red in 4th panel), Cnn (3rd panel, red in 5th panel),

and DNA (blue in merged panels). In WT meta-

phase neuroblasts (A) the spindle is always aligned

with the polarity axis (defined by the cortical aPKC

crescent), as is the case in �60% of SAKOE neu-

roblasts with extra centrosomes (B). In �40% of

SAKOE neuroblasts with extra centrosomes (C

and D), however, the spindle fails to align properly

with the aPKC crescent; spindle misalignment is

also detected in some anaphase cells (D).

(E) Quantification of mitotic spindle alignment in

WT and SAKOE neuroblasts that have extra cen-

trosomes. In the schematic diagram of cells, the

green crescent represent aPKC while the black

bars represent the mitotic spindle. Scale bar =

10 mm.

To test whether these asymmetric divi-

sion defects could lead to an amplification

of the neuroblast pool, we counted the

number of central brain neuroblasts in

WT and SAKOE brains (Figures 5D–5F).

The number of neuroblasts in SAKOE brain

lobes (55 ± 10.4, n = 40 lobes from 20 ani-

mals) was slightly, but significantly (p <

0.01), increased when compared to WT

brains (45 ± 9.4, n = 40 lobes, from 20 an-

imals). Thus, the presence of extra centro-

somes leads to an expansion in the num-

ber of stem cells in larval brains.

Centrosome Amplification Can
Initiate Tumorigenesis
A long-standing question in cancer biol-

ogy has been whether the presence of

extra centrosomes within a tissue can

drive tumorigenesis. SAKOE adult flies

showed no obvious evidence of tumor growth (data not shown),

but this is not surprising as there is little cell division in adult flies

and very few mutations give rise to tumors in adults. To over-

come this potential problem, transplantation assays have been

developed where larval imaginal discs or brains are transplanted

into the abdomen of WT adult hosts (Caussinus and Gonzalez,

2005; Gonzalez, 2007; Woodhouse et al., 1998). Transplanted

WT tissue can survive in adult hosts for several weeks without

overproliferating or forming tumors. In contrast, the transplanta-

tion of tissue from several mutants leads to tissue overprolifera-

tion and the formation of metastatic tumors within the WT host.

To test whether SAKOE larval brains could form tumors when

transplanted into WT hosts we expressed a-Tubulin-GFP (Tub-

GFP) in SAKOE flies so that we could follow the behavior of the

transplanted tissue. We used brain tumor (brat) mutant brains as

a positive control (Betschinger et al., 2006; Bello et al., 2006; Lee
Cell 133, 1032–1042, June 13, 2008 ª2008 Elsevier Inc. 1037



et al., 2006b). We did not detect any overproliferation when Tub-

GFP, WT brains were transplanted into WT hosts (Figures 6A and

6E,n =90),but 36%ofTub-GFP, bratbrains formed tumors (Figures

6B and 6E, n = 50) and several of the injected hosts went on to de-

velop one or more GFP-positive metastases far from the original site

of injection (n = 11/18). We found that 14% of Tub-GFP, SAKOE#2

brains (n = 104) and 20% of Tub-GFP, SAKOE#1 brains (n = 60)

formed tumors when transplanted into WT hosts (Figures 6C and

6E), and several of these hosts went on to develop one or more

GFP-positive metastases far from the original site of injection

(Figure 6D, n = 5/15 for SAKOE#2, and n = 6/20 for SAKOE#1

brains). The overproliferation of either the Tub-GFP, brat, Tub-

GFP, SAKOE#2, or Tub-GFP, SAKOE#1 tissues invariably led to

the premature death of the WT host within 10 to 15 days of injection.

DISCUSSION

Here we have examined the long-term consequences of having

too many centrosomes in a complex multicellular organism. Sur-

prisingly, we find that flies with extra centrosomes are viable, fer-

tile, and can be maintained in the laboratory as a stable diploid

stock for many generations. We show that cells with extra cen-

trosomes almost invariably divide in a bipolar fashion in vivo,

and the presence of extra centrosomes does not generate

large-scale genomic instability. Nevertheless, tissues with extra

centrosomes have the ability to overproliferate and form tumors

when transplanted into WT hosts. We conclude that centrosome

amplification is sufficient to promote tumorigenesis in flies.

Figure 5. Symmetric Divisions in SAKOE

Neuroblasts

(A–C) The dynamics of Jupiter::GFP (Jup::GFP) in

living WT (A) and SAKOE (B and C) neuroblasts.

WT neuroblasts always divide asymmetrically to

produce two cells of different sizes. In neuroblasts

with extra centrosomes both asymmetric (B) and

symmetric divisions (C) are observed.

(D–F) Quantification of the number of neuroblasts

in the central brain region. Immunostaining of WT

(D) and SAKOE (E) brain lobes with Miranda (red)

and Hoechst for labeling DNA (blue). (F) A graph

showing the average number of neuroblasts in

WT (white bars) and SAKOE (red bars) central

brain lobes. Scale bar (A–C) = 5 mm. Error bars rep-

resent standard deviation (SD).

Cell Division with Extra
Centrosomes
Our observations reveal that, in vivo, the

presence of extra centrosomes does not

lead to large-scale genetic instability in

somatic cells. As cells with extra centro-

somes enter mitosis, most of the centro-

somes are active and nucleate robust

asters of MTs. As mitosis proceeds,

however, many of the extra centrosomes

become clustered together to form two

dominant poles that assemble a bipolar mitotic spindle. This

phenomenon of centrosome clustering has been described in

several systems (Murphy, 2003; Quintyne et al., 2005; Ring

et al., 1982). In addition, however, we find that many extra cen-

trosomes do not become clustered at the spindle poles. Instead,

these extra centrosomes appear to be gradually inactivated, and

they organize less PCM and nucleate fewer MTs as mitosis pro-

ceeds. We do not understand the mechanism of this inactivation,

but it could result from a competition for limiting supplies of PCM

components. Perhaps the centrosomes that cluster together can

communally organize more PCM and so nucleate more MTs than

isolated centrosomes. This would then provide a negative feed-

back loop as mitosis progresses so that, eventually, the isolated

centrosomes are inactivated. Whatever its mechanism, the inac-

tivation of isolated centrosomes ensures that they do not form

extra spindle poles efficiently.

Cells with extra centrosomes are delayed in mitosis, and this

delay is maintained by the SAC. It is possible that the presence

of extra centrosomes somehow directly maintains the activity

of the SAC, although previous reports suggest that this is not

the case (Sluder et al., 1997). We suspect, therefore, that sister

chromatids may be inefficiently aligned on multipolar spindles,

and these improperly attached kinetochores ensure the mainte-

nance of SAC activity until a bipolar spindle has formed.

The SAC is not normally essential for fly development, as

mad2 mutant flies lack the SAC but are viable and fertile (Buffin

et al., 2007). Flies with too many centrosomes, however, com-

pletely depend on the SAC as mad2,SAKOE flies exhibit high

levels of spindle multipolarity and genetic instability and do not
1038 Cell 133, 1032–1042, June 13, 2008 ª2008 Elsevier Inc.



survive to adulthood. Thus, the SAC is essential to allow enough

time for cells with extra centrosomes to organize bipolar spin-

dles. Interestingly, while SAKOE flies are severely delayed in de-

velopment, the mad2,SAKOE flies develop faster than WT flies,

indicating that the SAC-dependent delay in mitosis also slows

the development of SAKOE flies.

It has previously been shown that centrosome clustering in

cells with extra centrosomes is dependent on the activity of dy-

nein (Quintyne et al., 2005). Here we show that another minus-

end-directed motor, Ncd (HSET in vertebrates), also plays

a role in this process. Ncd is not essential for Drosophila devel-

opment, and ncd mutants develop at normal rates with few mi-

totic defects (Endow and Komma, 1998; Skold et al., 2005; this

work). We found that ncd,SAKOE flies were severely delayed

in development, exhibited elevated levels of spindle multipolarity

during early mitosis, had a dramatically increased mitotic index,

but ultimately divided in a bipolar fashion. We conclude that Ncd

enhances the efficiency of bipolar spindle formation in cells with

extra centrosomes, but it is not absolutely essential, and the SAC

ensures that these cells do not exit mitosis until they have formed

a bipolar spindle.

Extra Centrosomes in Nonsomatic Tissues
The development of flies with extra centrosomes in their somatic

tissues is delayed but otherwise appears to proceed normally. It

is known, however, that the role of the centrosome differs be-

tween embryonic and somatic tissues in Drosophila. While so-

matic fly cells can tolerate the absence of centrosomes, these

organelles are essential for early embryonic development in flies

(Dix and Raff, 2007; Stevens et al., 2007; Varmark et al., 2007).

Although SAKOE flies are viable and fertile, we note that

�60% of SAKOE embryos accumulate mitotic defects and die

during early embryonic development (Peel et al., 2007). More-

over, the mechanisms that ensure bipolar spindle formation in

the presence of extra centrosomes may be absent in male

germ cells; the presence of extra centrioles or centriole frag-

Figure 6. Transplantation of SAKOE Brain Tissue

Induces Tumor Formation in WT Hosts

(A–C) Pictures of WT hosts transplanted with either Tub-

GFP,WT (A), Tub-GFP,brat (B), or Tub-GFP,SAKOE (C)

brains at 14 days post-injection. (A) The GFP fluorescence

of the WT brain is still detectable in the host, but the brain

has not detectably overproliferated (arrow). The GFP fluo-

rescence of the brat (B) and SAKOE transplanted brains

(C) has expanded to fill the abdomen of the host.

(D) Picture of a GFP-positive metastasis in the eye of a WT

host.

(E) A table showing the frequency of tumor and metasta-

ses formation in WT hosts transplanted with the different

types of brain tissue.

ments in these cells leads to the formation of

multipolar spindles and to male sterility (Dix

and Raff, 2007; Martinez-Campos et al., 2004).

The overexpression of SAK does not lead to

centrosome amplification in male germ cells

(Peel et al., 2007), presumably explaining why

SAKOE male flies are fertile. Interestingly, we could not detect

any uncoordinated behavior in flies with extra centrosomes, sug-

gesting that cilia assembly and function are unaffected by the

presence of extra centrioles (Baker et al., 2004; Basto et al.,

2006; Martinez-Campos et al., 2004).

Centrosome Amplification and Tumor Formation
We find that brain cells with extra centrosomes can form tumors

when injected into WT adult flies. The pathways that lead to tu-

mor formation are complex, and the events that initiate this pro-

cess remain controversial. Our work shows, however, that cen-

trosome amplification is sufficient to initiate tumorigenesis in

the fly.

It is not clear how centrosome amplification initiates tumor for-

mation. Boveri originally hypothesized that extra centrosomes

might promote tumorigenesis by promoting genetic instability.

The nature of the link between aneuploidy and cancer, however,

remains controversial. Recently, it has been shown that in-

creased levels of aneuploidy in mouse models can promote tu-

mor formation in certain tissues at later stages in life but sup-

press tumor formation upon exposure to certain carcinogens

or upon the loss of particular tumor suppressor genes (Sotillo

et al., 2007; Weaver et al., 2007). Thus, aneuploidy does not in-

variably lead to cancer formation. In SAKOE brains the rate of an-

euploidy is low, although it is higher than that observed in WT

brains (1.75% compared to 0.7%, respectively). It is possible

that this modest increase in aneuploidy could allow cells with

extra centrosomes to initiate tumor formation in flies.

Alternatively, previous studies in flies have shown that there is

a correlation between defects in the asymmetric divisions of

larval neural stem cells (neuroblasts) and the ability of injected

mutant brain tissue to form tumors when transplanted into WT

hosts (Caussinus and Gonzalez, 2005; Woodhouse et al.,

1998). Defective asymmetric divisions can result in the expan-

sion of the neuroblast population, which ultimately leads to

overproliferation (Bello et al., 2006; Betschinger et al., 2006;
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Lee et al., 2006a, 2006b; Yu et al., 2006). We find that the asym-

metric division of neuroblasts is perturbed in SAKOE brains, and

this leads to an expansion of the neuroblast population—a defect

that could allow SAKOE-injected brains to overproliferate and

form tumors. Indeed, there is much interest in the idea that

mutations in stem cells could be central to the generation of

cancer (Al-Hajj and Clarke, 2004; Gonzalez, 2007). Importantly,

although the increase in aneuploidy and the defects in asym-

metric division are only seen in SAKOE cells that have extra

centrosomes, we cannot rule out the possibility that SAK over-

expression induces tumors via some other mechanism that is

unrelated to centrosome amplification. Indeed, mice that are

heterozygous for SAK have a variety of cell-cycle defects and

have an increased incidence of spontaneous tumor formation

(Swallow et al., 2005).

Our observations have important implications for under-

standing the potential link between centrosomes and cancer.

In the literature it is often stated as fact that the presence of

extra centrosomes in cells generates genetic instability. This

assumption is based on the observation that extra centrosomes

clearly lead to spindle multipolarity and genetic instability in

some systems (Brinkley and Goepfert, 1998; Wunderlich,

2002) and the strong association between these two pheno-

types in many cancer cells (D’Assoro et al., 2002a, 2002b; Fu-

kasawa, 2005; Lingle et al., 1998, 2002; Lingle and Salisbury,

2000; Nigg, 2006; Pihan et al., 1998, 2001, 2003; Saunders,

2005). Our data demonstrate, however, that the presence of

extra centrosomes does not inevitably lead to genetic instability

in vivo, at least in a relatively simple organism like Drosophila.

Instead, extra centrosomes are reasonably well tolerated in flies

because several pathways cooperate to ensure that these cells

ultimately divide in a bipolar fashion. Only when one or more of

these pathways is compromised is large-scale genetic instabil-

ity generated.

These findings highlight the possibility that the presence of

extra centrosomes could prove to be an ‘‘Achilles heel’’ for

many different cancers. Fly cells with too many centrosomes

are viable, but they are much more reliant on certain pathways

(such as the SAC) or proteins (such as Ncd) for their survival

than normal cells. It seems plausible that inhibiting these path-

ways in cancer patients could effectively kill the cancer cells,

while leaving normal cells relatively unharmed.

EXPERIMENTAL PROCEDURES

Generation of Transgenic Lines

P-element-mediated transformation vectors were generated by amplifying

the complete SAK coding region from a full-length cDNA with att sites at either

end for Gateway cloning (Invitrogen). PCR products were inserted into the

Gateway pDONR Zeo vector and sequenced. This vector was recombined

with the pUbq-GFPNT Gateway vector (R.B., unpublished data) to place full-

length SAK with GFP at its N terminus under the control of the Ubiquitin

(Ubq) promoter.

Fly Stocks

We used w67 and wf stocks as controls in our experiments. The majority of

experiments described here were performed with two transgenic lines: Ubq-

GFP-SAK#1 and Ubq-GFP-SAK#2. We recombined Ubq-GFP-SAK#2 with

the DSas-4S2214 (Basto et al., 2006), mad2P (Buffin et al., 2007), and ncd1 (En-

dow and Komma, 1998) mutations by standard recombination methods. For
1040 Cell 133, 1032–1042, June 13, 2008 ª2008 Elsevier Inc.
live-cell imaging we crossed the following markers into the appropriate genetic

backgrounds: Ubq-RFP-a-Tubulin (a gift from Saskia Suijkerbuijk and Jeroen

Dobbelaere), Ubq-GFP-DSas-4 (Peel et al., 2007), and a MT-associated pro-

tein tagged to GFP, Jupiter:GFP (Karpova et al., 2006). Measurements of

growth and survival rates were performed as previously described (Basto

et al., 2006).

Antibodies

The following antibodies were used in this study: rabbit anti-DSas-4 (Basto

et al., 2006), rabbit anti-D-PLP (Martinez-Campos et al., 2004), rabbit anti-

Cnn (Lucas and Raff, 2007) (all at 1–2 mg/ml final concentration), guinea pig

anti-Cnn (1:500, E. Lucas and J.W.R., unpublished data), rabbit anti-Mud

(1:250) (Izumi et al., 2006), mouse anti-Miranda (1:20) (Ikeshima-Kataoka

et al., 1997), rabbit anti-aPKC (1:500, SC-216, Santa Cruz Biotechnology,

inc.), mouse anti-g-tubulin (1:1000; GTU88, Sigma), mouse anti-a-tubulin

(1:1000: DM1a, Sigma), rabbit anti-phospho-Histone3 (1:2000, Upstate Bio-

technology). All fluorescent secondary antibodies were obtained from Molec-

ular Probes (Invitrogen).

Immunofluorescence Analysis of Brains

Brains were dissected and fixed as described previously (Martinez-Campos

et al., 2004). Preparations were examined using either a Zeiss Axioskop II

microscope with a CoolSnapHQ camera (Photometrics) with Metamorph soft-

ware (Molecular Devices Corp.), or a Zeiss LSM 510 Meta scanning confocal

system mounted an a Zeiss Axiophot II microscope, or a Perkin Elmer ERS

Spinning Disc confocal system using ERS software mounted on a Zeiss Axio-

vert 200M microscope. All images were processed with Adobe Photoshop

software: all images were adjusted using the same procedures that were ap-

plied to the whole image. Spindles were classified as multipolar when more

than two centrosomes (revealed by costaining of D-Plp and Cnn) organized

a-tubulin foci. Mitotic spindles were classified as abnormal when it was not

possible to identify clearly spindle poles and/or when the morphology of the

spindle was very disorganized.

The levels of aneuploidy and polyploidy were calculated in third-instar

larval brain squashes as described previously (Basto et al., 2006). The mitotic

index was calculated by fixing and squashing four brains of the appropriate

genotype and then staining them with anti-phospho-histone H3 antibodies

and Hoechst. Pictures of 5–10 fields of cells (typically containing 200–400

total cells per field) were obtained from each brain, and the ratio of mitotic

(phospho-histone H3 positive) to nonmitotic cells was calculated for each

field. Each field analyzed was counted as an ‘‘event’’ and thus used to

calculate the standard deviation and the significance of the difference be-

tween the different datasets (p value) using the two-tailed t test function in

Excel.

Analysis of spindle position relative to the apical aPKC crescent position was

performed by staining fixed brains with anti-aPKC, anti-DPLP, anti-a-tubulin,

and anti-Cnn antibodies. For SAKOE neuroblast analysis, we only scored mi-

totic cells with more than two centrosomes and where an aPKC crescent could

be clearly distinguished. The angle between the spindle axis and the aPKC

crescents was determined using the measurement tool in Metamorph. The

data were analyzed for statistical significance using the two-tailed t test func-

tion in Excel.

Previous studies with anti-Mud antibodies descibed Mud localization at

centrosomes and also at the apical cortex (Bowman et al., 2006; Izumi et al.,

2006; Siller et al., 2006). In our hands, we could not detect Mud at the apical

cortex, presumably because we used different fixation conditions designed

to allow us to quantify centrosome number in the SAKOE cells.

Neuroblast numbers were obtained by counting the number of Miranda-

positive central brain neuroblasts in 40 WT and 40 SAKOE brain lobes. From

the 40 WT brain lobes we found a minimum and maximum number of 30

and 69 neuroblasts, respectively, with an average of 45 (SD ± 9.4). From the

40 SAKOE brain lobes we found a minimum and maximum number of 41

and 78 neuroblasts, respectively, with an average of 55 (SD ± 10.4). The signif-

icance of the difference between the two datasets was assessed using the

two-tailed t test function in Excel.
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